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ABSTRACT 

To characterize and quantify the performance of the Landsat thematic mapper (TM), we 
have studied and evaluated techniques for dimensionality reduction by linear transformat ion 
and have analyzed the accuracy of the correction of geometric errors in TM images. 

Theoretical evaluations and comparisons for existing methods for the design of liiiear 
transformations for dimensionality reduction are presented. These methods include the discrete 
Karhunen Loeve (KL) expansioii, Multiple Discriminant Analysis (MDA), Thematic Mappw 
(TM)-Tasseled Cap Linear Transformation and Singular Value Decomposition (SVD). 

A unified approach to  these design problems is presented in which each method involves 
optimizing an objective function with respect to  the linear transformation matrix. From thc 
these studies, four modified methods are proposed. They are referred to  as the Space Variant 
Linear Transformation, the KL Transforrn-MDA hybrid method, and the First and Second 1 er- 
sion of the Weighted MDA method. The modifications involve the assignment of weights to  
classes t o  achieve improvements in the class conditional probability of error for classes with high 
weights. 

Experimental evaluations of the existing and proposed methods have been performed using 
the six reflective bands of the TM data. I t  is shown tha t  in terms of probability of classification 
error and the percentage of the cumulative eigenvalues, the six reflective bands of the TM data 
require only a three dimensional feat,ure space. It is shown experimentally as well tha t  for the 
proposed methods, the classes with high weights have improvements in class conditional proha- 
bility of error estimates as expected. 

An analysis of the accuracy of tlie correction of georiietric errors in TM imagery is also 
presentccl. Thc approxi1 to  this lash i s  to pcrforni a grouiid control point (GCP) based bivari- 
ate polylioniial coordiIIate transroriii;iLic,ii to rrctify the TM image to a map projection, and to  
analyze t , I i v  errors in this transfornii~Lic,~~. 
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1. Int roduct ion  
The objective of our work is to characterize and quantify the performance of the Landsat 

thematic mapper (TM) by analyzing the quality of the image data  generated by the ground data  
processing system. Our primary concern is with a study of the techniques for dimensionality 
reduction of TM data  and with the analysis of the accuracy of the correction of geometric errors 
in TM images. 

In Par t  I of this report, we discuss methods for dimensionality reduction. The  increased 
dimensionality of the 7-channel Landsat T M  imagery presents machine processing problems in 
terms of storage, analysis, and display. We have applied and analyzed objective procedures for 
the reduction of the data dimensionality by linear transformation. The motivations for dimeri- 
sionality reduction include the attainment of simplicity of understanding, visualization, interpre- 
tation, and the retention of sufficient detail for adequate representation. The circumstairces 
under which dimt:nsionality reduction is required are data  exploration, stabilizing the da ta  sta- 
tistical properties, aiding significance assessment, preparing the data for classification and detec- 
tion of possible functional dependencies among the observations. We were primarily concerned 
with the use of dimen.sionality reduction as a means of feature selection or extraction in a pat- 
tern recognition or classification system. Our criterion for the performance of a dimensionality 
reduction is the classification accuracy that can be attained by processing the dimensionality 
reduced data.  

We have analyzed, evaluated, and compared existing methods for designing the linear 
transformations for dimensionality reduction, including the Karhunen Loeve (KL) transform, 
multiple discriminant analysis (MDA), the TM-tasseled cap linear transformation, and the 
singular valued decomposition (SVD). From these evaluations, several modified methods are 
proposed, including the Space Variant Linear Transformation and the KL transform-MDA 
hybrid methods, and two versions of weighted MDA methods. Two design methods are pro- 
posed for the design of linear transformations for dimensionality reduction for noisy data  or 
observations. From the theoretical studies of the existing methods and our modificatioris of 
these methods, we propose a unified approach to these design problems, in which each metliod 
involves optimizing an objective function with respect to  the linear transformation matrix. The 
existing and proposed methods are then evaulated experimentally by applying them to Lantlsut, 
TM data  and performing land use classification on the dimensionality reduced data. 

In section 2, we provide an introduction to dimensionality reduction in the context of pat-  
tern recognition and classification systems. In section 3, we describe and analyze existirig 
methods for linear transformation for dimensionality reduction, including the KL transforriia- 
tion, a physically-based linear transTorrii,ilion (the Th4 tasseled cap), MDA, and SVD. We then 
provide a comparison and discussion of t h ~ v  related methods. In section 4, we discuss methods 
for dimcnsionality reduction for noisy observations, based on factor analysis, minimum mean 
squared error methods, and signal to noisr ratio methods. In section 5 ,  we describe a unified 
approach to diniensionality reduction by linear transformation, in which each of the methods in 
shown to involve the optimization of an objective function with respect to  the linear transfor- 
mation matrix. Objective functions are derived for each of the existing methods. In section 6, 
we propose a new method for dimensionality reduction, which we have called the Space Variant 
Linear Transformation. In this inetliud, different linear transformations are used for dilfereiit 
regions of the feature space, in an attempt to optimize the classification performance in each 
region of the feature space. In section 7, we provide an experimental evaluation of the dinien- 
sionality reduction techniques. We make performance comparisions for these techniques, based 
on the probability of classification error for the same reduced dimensions for each methods. 
Finally, in section 8, we provide and discuss several general conclusions based on our theoretical 
and experimental analyses of dimcnsionality reduction methods. 
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Part  I1 of this report is concerned with the quantification of the accuracy of the correclion 
of geometric errors in TM imagery. Our approach t o  this task is t o  perform a ground control 
point (GCP) based bivariate polynomial coordinate transformation t o  rectify the TM image to  a 
map projection, and to  analyze the errors in this transformation. In section 9, we describe a 
method for coordinate transformation based on the method of least squares, employing ortho- 
normalized polynomial basis functions to avoid numerical instabilities inherent in previously 
described methods. Associated with this method are procedures for the analysis of the accuracy 
of the geometric transformation and of the rectification of the image t o  a map projection as a 
function of the number, location, and local accuracy of the GCPs used to  characterize the 
transformation. This method is then applied to the geometric rectification of a Landsat 4 T M  
subscene. 
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Part I 

Dimensionality Reduction 



2. Introduction to Dimensionality Reduction 

Classifier 

2.1. Pattern Recognition/Classification Systems 

These subsystems are the transducer, the feature selector/extractor and the classifier. 
Pattern Recognition/Classification Systems have three subsystems[ 11 B L ~  shown in Fig.2.1. 

P 
b . . 

J 

Raw data/ Feature Space 
measurement space 

classes, w, 

D-dim d-dim K 

Fig.2.1. Pattern Recognition/Classification Systems 

The  main purpose of the feature selector/extractor is t o  reduce the dimensionality of the meas- 
urements produced by the transducer, by extracting features or properties of the patterns of 
interest. The  feature selector/extractor is designed to  transform the D X 1 measurement vectors 
into d X 1  feature vectors, with d < D  , such that the probability of classification error in the d 
dimensional feature space is no worse than the probability of classification error in the original 
D dimensional measurement space. Linear transformations are widely used in feature extrac- 
tors because they are analytically tractable. 

2.2. Motivations for Dimensionality Reduct ion 
The motivations for dimensionality reduction have been discussed in a large number of 

publications. Gnanadesikan12) describes the issue of dimensionality reduction of da ta  as being 
the attainment of simplicity of understanding, visualization, intepretation and the retention of 
sufficient detail for adequate representation. The circumstances under which dimensionality 
reduction is required are data  exploration, stabilizing the data  statistical properties, aiding 
significance assesment, preparing the data for classification and detection of possible functional 
dependencies among the observations. Hence the important aspects here are simplicity versus 
sufficient detail of representation. Fukunaga[B] defines dimensionality reduction as a product of 
feature extraction, which is a mapping from the original measurement space into more effective 
features, where effectiveness refers either to the quality of data representation or of class separa- 
bility. 

The  motivations for reducing dimensionality cited by deViejver and Kittler[4] are t o  reduce 
the computational complexity of the classifier and to  reduce the error of the parameter estima- 
tions when the number of training samples for each class is finite. They describe the second 
motivation as the problem of the generalization capability of the classification system, due to an 
increase in the number of parameters with an increase of dimensionality. For a finite number of 
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training samples, the accuracy of these parameter estimates might be low with respect to the 
true parameters of the distributions with which the classes have been modelled. The parameter 
estimates will be accurate, in the case of finite number of training samples, for the training sam- 
ples only but might not be accurate for the rest of the data. That  is why this is called the lack 
of generalization capability problem. However, in some cases, the design of the feature extractor 
to reduce the dimensionality requires the estimates of the parameters as well, so the resulting 
features may have the same problem. The problems, caused by the finite number of training 
samples, are frequently observed in practice[ 11, of which increasing dimensionality leads to worse 
rather than better classification performance. 

Kana1151 describes the goals of feature selection and extraction as (1): finding key features 
for regeneration or reconstruction, (2): finding features which can parsimoniously characterize 
the pattern, and (3): finding effective features for class discrimination or combination of the 
above goaIs. One example of a method to meet the first goal is what is known as the Karhunen 
Loeve expansion, which will be discussed in the following section, where the da ta  vectors are 
represented by lower dimensional vectors with minimum mean squared error representations. 
For the second goal, one example for Landsat Thematic Mapper ( TM ) data  are features which 
characterize their physical properties Le. out of the six reflective bands, which will be discussed 
in detail in the following section, the data can be represented in a three dimensional feature 
space. These features are called(61 brightness, greenness and wetness. Example of a method to  
meet the third goal is the well-known method of multiple discriminant analysis (MDA) which 
also will be discussed in the latter section, which basically tries t o  provide features for which the 
among class scatter is maximized and the within class scatter is minimized. 

Merembeck and Turner[’lJ state tha t  storage requirements for large dimensional data  can 
cause machine processing problems. Certainly if the dimensionality of the da ta  vectors can be 
reduced, the storage requirements will be decreased as well. One thing worth noting, however& 
t o  assume tha t  the data  in the original measurement space are represented in byte format for a 
particular dimensionality. The dimensionality is reduced but  the da ta  representation in the 
reduced dimensionality feature space are in real format. The machine representation of real 
variables requires four bytes storage, therefore, the dimensionality reduction itself might not 
necessarily reduce the storage requirements. The storage requirements can be reduced if the 
representation of the data in the reduced dimensionality feature space is also in byte format, or 
we need t o  quantize the data  in the new feature space. 

If we are given a set of da ta  t o  be classified, there are several steps in the process that 
motivate the needs for dimensionality reduction, all of which have been discussed in the quoted 
references. The references quoted here are not exhaustive but  they cover all the  circumstances 
which require feature selection or extraction for dimensionality reduction. 

A summary of these steps include: 
1. Data exploration. 

In this step we want to learn how the data  are scattered or distributed. This may include visual 
observation. Certainly a managable dimensionality will simplify this process and the class train- 
ing areas might be easier to find and the distribution of the class might be easier to observe. 
Features in the reduced dimensionality space which have a physical intepretation for a specific 
set of d a t a  certainly are very helpful in this step. This exploration will yield the class 
definitions and the training areas for each class in the supervised classification method. In unsu- 
pervised classification such as clustering, this exploration step might be done simultaneously 
with the classification IS]. Note that in this step, the class definitions or information may not be 
available yet, and therefore the method for reducing the dimensionality will be based more on 
d a t a  representation, or the use of features which have physical intepretations for the particular 
set of data. 
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2. Estimation of class parameters. 
In this step, where the problems of a finite number of training samples have been discussed pre- 
viously, dimensionality reduction can avoid the problem of lack of generalization. 

3. Data classification. 
Here the problem is the computational complexity of the classifier. 

simplification. 
design the feature extractor niay be different for each step in the overall classification process. 

In general, therefore, reducing the dimensionality is closely related t o  achieving data  
The detailed motivation for reducing the dimensionality and the criterion to 

2.3. Spectral Characteristics of Thematic Mapper 
The Thematic Mapper (TM) is the earth resources sensor built t o  improve the preceeding 

sensor i.e. the Multi Spectral Scanner (MSS) system. The TM is pu t  is the satellite platform 
called the Landsat-D whose orbit is a circular near polar sun synchronous with a 98.22 degree 
inclination to the equatorial plane[9]. The altitude is ; i b o i i t  705.3 km above equator, the equa- 
tor crossing time is about 9:45 a.m. with repeat period o f  16 days. 

The T M  has seven sensors occupying the visible, near and middle infra red and far infra 
red. The visible, near and middle infra red sensors measure the light reflectance of the earth 
while the far infra red sensor measure the thermal characteristics or temperature of the earth 
surface by measuring the emitted energy in that frequency band. In Table 2.1. the spectral cov- 
erages and their spatial resolutions or the Instantaneous Fields of Views (IFOV) are shown[9]. 

Table 2.1. 
Thematic Mapper 

1 0.45-0.52 30 
2 0.52-0.60 30 
3 0.63-0.69 30 
4 0.76-0.90 30 
5 1.55-1.75 30 
7 2.08-2.35 30 
6 10.4- 12.5 120 

The quantization is performed toward the output data, the number of bit of the output data is 
eight. 

From Table 2.1. we can see tha t  assuming tha t  the T M  data  are vectors then they are 
seven dimensional vectors. The IFOV is relatively better than the previous earth resources scn- 
sor i.e. the MSS, therefore for the same size area the number of data  from the TM will be about 
four times of the MSS since the IFOV of the MSS is about 80 m. From this reason only the 
need of study of the dimensionality reduction for the TM data  is justifiable. 

2.4. The Objectives of the Research Project. 
The first objective of the research is to perform some theoretical evaluations and comparis- 

ons of the existing methods for designing the linear transformations for dimensionality reduc- 
tion. The existing methods include the Karhunen Lodve (KL) Transform, Multiple Discriminant 
Analysis (MDA) Method, the TM-Tasseled Cap Linear Transformation and the Singular Value 
Decomposition (SVD) linear transformation methods. From these evaluations, we propose some 
modified methods which we refer to  as the Space Variant Linear Transformation and the KL 
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Transform-MDA Hybrid Methods, modifying the KL transform method, and the First and 
Second Versions of the Weighted MDA Methods, modifying the the MDA method. The 
modifications basically involve the assignments of weights t o  classes t o  achieve lower class condi- 
tional probability of error for the classes which are assigned high weights. We want to  observe 
these class conditioiial probability of error improvements in the experiments. 

Also we are proposing the two design methods for linear transformations for dimensionality 
reduction for noisy data or observations. They are referred to  as the Minimum Mean Squared 
Error Criterion Based Factor Analysis, a modified version of the ordinary Factor Analysis 
Method, and the Signal t o  Noise Ratio Based Dimensionality Reduction. 

From the theoretical studies of the existing methods for the design of the linear transfor- 
mations for dimensionality reduction, we also propose a unified approach to these design prob- 
lems, where each method will involve optimizing an objective function with respect to  the linear 
transformation matrix . 

Experimental evaluations of these existing and proposed methods are also will be per- 
formed. Final conclusions of the theoretical and experimental evaluations of the existing and the 
proposed methods will then be given. Because we will use the Landsat Thematic Mapper (TM) 
da ta  in the experiments, the conclusions will be more applicable to  the T M  data  rather to  a gen- 
eral da ta  set. 

This report follows closely the Ph.D. Dissertation[lO] of Kartasasmita, where part  of the 
research associated t o  that Dissertation is performed to  implement this research project. 
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8. Linear Transformation for Dimensionality 
Reduction 

3.1 Introduction 
For the Feature Selector/Extractor shown in Fig.1.1, the input measurement vector or raw 

data vector z is a D X 1  vector and the output feature vector y is a d X 1  vector, where d < D . 
The general relationship between 2 and y is 

y = A  (z) ( 3 4  

T o  determine A (.) , a d X 1 vector function, a criterion function J must be optimized. Ideally, 
we want to  minimimize the probability of classification error, P, , when we use the feature vec- 
tor g for the classification. This P, should not be much larger than if we were to use the meas- 
urement or raw data  vector, g. In general the function A (.) could be any function of the meas- 
urement vector bu t  most existing methods[l] assume A t o  be a linear transformation, as follows 

( 3 4  
y = A  T g 

where A is a D X d  matrix. The general problem definition therefore is t o  find the D X d  
matrix A such tha t  the criterion fuction J ( A )  is optimized with respect to  matrix A .  The 
resulting transformed vector will be the d X1 vector y given in Eq(3.2). The ideal criterion 
function is the probability of classification error P ,  , however, methods using other criterion 
functions also will be considered and discussed. 

Since the ideal criterion function for finding A is P , ,  we will first discuss the minimum 
risk Bayesian classifier which, after making some assumptions, will become the minimum proba- 
bility of error classifier. 
To proceed, we need t o  establish some definitions and assumptions : 

1. There are K classes w ; ;  i =1, . . . , K 
2. The  class-conditional probability density function of y, given tha t  i t  comes from class 

wi is P (3 Iwi  ) -  
3. The apriori probability of class w,  is P (w i  ) . 
4. The mixture density of y is 

K 

i =1 
P (3) = C P (w i  ) P ( Y I wi ) 

5. We assign a cost O j j ,  the cost of assigning y to  class wi , where actually it is a. member 
of class w j  . 
From Bayes rule, the aposteriori probability is 

This is the  probability tha t  vector ~1 comes from class w i ,  given the observation of g . The cost 
or risk of making the decision to  assign the observed y to class wi is: 

li 

R (w i  1~1)' X Bij P ( w j  I Y )  (3.4) 
j =1 
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The average risk over all observations is 

R(w;)=JR(w;  I Y ) P ( Y ) d Y  (3.5) 

To minimize the average risk R (w; ) we need to minimize R (wj I y) with respect to the classes 

wi . This can be done by applying the decision rule tha t  will assign y into class wi iff 

R(wi  l y ) S R ( w j  I Y )  ;#.I’ (3.6) 

If all Classification errors impose the same risk, and there is no risk or loss in making a correct 
decision, the cost O j j  is: 

and the risk of assigning y to class w; becomes: 

R (w; I y ) = l - P (  wi I Y )  

But since P ( w i  13) is the probability that the vector y comes from class w i ,  the risk 

R (w; I y) is simply the probability tha t  the vector y does not come from class wi . If we assign 
y to class w;, then the right hand side of Eq.(3.8) is the probability of classification error given 
tha t  vector y is observed. 

pe (Y)=l-p(wi la) 

The error rate or the probability of classification error, P, , is 

To minimize P, the decision rule then becomes: assign y t o  class wi iff 

P (w;  I Y ) ? P ( w j  I Y )  i # j  (3.10) 

and P, now becomes 

Given this expression for the dimensionality reduction criterion function, we return to  the 
problem of finding the matrix A in Eq.(3.2). The objective now can be rephrased such that, for 
a particular d ,  the feature vector dimension, we would like t o  find the matrix A such tha t  P, 
is minimized 

The  optimization of Eq.(3.12) to  find the matrix A will involve multiple numerical integrations 
in which the maximuni aposteriori probability of each vector A ‘z in the integrand has to  be 
selected and numerically minimized t o  find the  elements of matrix A , assuming that  we can find 
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the closed form of the probability density function p (A Tz I wi ) from a given p (3 I w,  ) . This 

in general is a very complex process. 

3.2 Probabilistic Distance Based Linear Transformation 
Given the difficulty of finding the transformation matrix A tha t  minimizes the probability 

of classification error, criterion functions which are related t o  the probability of error have been 
investigated. One such class of criterion functions are the probability distance meas- 
ures[l, 2, 3, 4, 5 ,  6, 7,  8, 9, 10). 

Those probability distance measures had been listed in several books and the current list 
can be found in[l] and they are : 
1. Chernoff 

2. Battacharya 

J,=-lnJ [P(Z I@l)P(Z Iw2) ] 'I2dZ 
3. Matushita 

4. Divergence 

P (z I w1) 
P(Z 1 % )  

JD =J [P (z I w1) -P (z I w 2 )  ]in dill 

5. Pattrick-Fischer 

6. Lissack-Fu 

7. Kolmogorov variational distance 

JK=J  IP(Z IwI)p(wl)-P(z I w 2 ) q J J z )  I dz 

The probabilistic distance measure can be described as an average distance between two 
probability density functions where the averaging is done for all possible realizations of the ran- 
dom vectors of those two density functions. In general these measures can be written as follows 

Relationships wit11 P, , either analytically or experimentally, have been demonstrated for some 
of these measures, but, primarily for the two class ( K = 2 )  problem. For example Yablon and 
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Chu [3] have shown the existence of strictly monotonic relationships between the minimum 
Bayes risk and some of the probabilistic distance measures under certain conditions, for two 
multivariate normal classes with equal covariance matrices. 

For more than two classes[l], the criterion function is: 

(3.14) 

We can substitute the vector A T g  for 1 and try t o  find A such that  J of Eq.(3.14) is maxim- 
ized, but from the form of Eq.(3.13) it can be seen that  this will not be simple even though it 
might be simpler than the method using P, as the criterion function. 

For normally distributed random vectors some of the distance measures can be reduced to 
functions of the class conditional density parameters only[l, 7, 111. This certainly can simplify 
the maximization of the criterion function J given in Eq.(3.14) to  find the transformation 
matrix A , However, the problem of this approach is tha t  the matrix A found from the maximi- 
eation of the criterion function J is the best only for a particular dimension d .  Thus we have to  
maximize J for several values of d and then select the matrix A that  gives smallest d where 
the maximum value of J will not change much more by increasing the value of d .  Therefore 
the use of the probabilistic distance measures is more appropriate for feature selection, for 
example,as shown in[lO], rather than for feature extraction. 

We conclude that  the probabilistic distance criterion functions lead to  computational 
difficulties in the determination of the optimal linear transformation matrix A . To find compu- 
tationally tractable methods, other criterion functions must be considered. Basically we will dis- 
cuss three approaches, where the first minimizes the mean squared error (MSE) of the represen- 
tation of the measurement vector by the dimensionality reduced features. The second approach 
maximizes the class separability by defining the criterion function to be the ratio of between 
class scatter to within class scatter. The third approach uses the invariant property of the 
minimum probability of classification error of the multivariate Gaussian classes for the dimen- 
sionality reduced da ta  vectors by linear transformation. The third approach, under certain con- 
ditions, has a relationship with the probability of classification error. However, for the first and 
the second approaches, the formal relationship between these criterion functions and the proba- 
bility of classification error has not been established. But i t  is apparent tha t  a relationship 
exists, so these approaches have some merit. 

These methods will be discussed in the following sections. First, we discuss the minimum 
MSE representation, known as Karhunen LoPve (KL) expansion, followed by a discussion of the 
method of maximizaticm of a scatter ratio, known as Multiple Discriminant Analysis (MDA) or 
Fisher’s Linear Discriminant Analysis, and conclude with a discussion of the third approwh, 
known as the Singular Value Decomposition Linear Transformation (SVDLT) method. 

3.3 Discrete Karhunen Lodve Expansion 
The objective of the discrete KL expansion is to  find a set of orthonormal basis vectors 

such tha t  if some of the basis vectors are discarded, the approximate representation of the 
measurement vector 2 will have minimum USE. The criterion function in this method there- 
fore is the  MSE, and the intended matrix A will have the orthonormal basis vectors as its 
columns. The word discarded is put in Italics because in one of the representations, t o  be dis- 
cussed in Sec.3.3.2., some of the basis vectors are not really discarded. 
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3.3.1 The First KL l€epresentation 
For a given D X 1 random vector z , 

D 

i= l  
- 2°C yiai 

where ai are the orthonormal basis vectors and y, are 
T yj=Z ai 

The approximation representation[ 11 is given by 
d 

i=l 
% = E  yiai 

the linear coefficients, 

(3.17) 

(3.15) 

(3.16) 

where d < D . The elements of the d X1 vector y are the linear coeficients { Yi  } given by 

Eq.(3.16). By assigning the d basis vectors gj of Eq.(3.17) as the columns of the D X d matrix 
A ,  the expression for the vector y is again given by Eq.(3.2). The problem now is to  find LL~ 
such that  the MSE of the representation, chosen to be the criterion function, 

(3.18) 

is minimized with respect t o  each basis vector 4. The minimization yields an eigen equation of 
the autocorrelation matrix, Rz , i.e. 

Rz fii=Xig, (3.19) 

Thus the set of orthonormal basis vectors are the eigenvectors of Rz . The MSE becomes 
D 

i = d  +1 
e =  X i  

Therefore if the eigenvalues Xi are ordered 

A,> * > X i  1 - - - >A, 

(3.20) 

(3.21) 

and we discard the eigenvectors 4; associated eith the D -d  smallest eigenvalues, the minimum 
MSE representation is achieved. 

Using the ai for 15; < d  as the basis vectors, the D X 1 random vector g can be approxi- 
mately represented by the d X 1 random vector y , 

y = A  T z (3.22) 

where A is a D x d matrix, having columns being the selected basis vectors ai, 

A=(a1, *" ,&,  - * * r B d  1 

3.3.2 The Second KIA Representation 
The second approximation representation is[7] 

d D 
> = E  yia, + b,a 

i=d+l i =1 

(3.23) 

(3.24) 



- 13 - 

where d < D  , and bi are unknown constants, with the orthonormal expansion of g again given 
by Eq.(3.15), having the linear coefficients yi given by Eq.(3.16). For reasons tha t  will be dis- 
cussed later the D x1 vector g can be represented by a d x1 vector y whose elements are the 
linear coefficients yi given by Eq.(3.16). This vector y can be found by taking the linear 
transformation of the vector 4 using the matrix A whose columns are the set of selected ortho- 
normal basis vectors a, exactly following Eq.(3.2). 
The problem now is to  find and bi such that the MSE, which is similar t o  one in the first 
representation 

(3.25) 

is minimized. This yields an eigen equation of the covariance matrix of g , E,, 
~i =Pi ai (3.26) 

and the constants bi are given by 
bj=% T mz (3.27) 

where az is the mean vector of g. Thus the set of orthonormal basis vectors (gi } are the 

eigenvectors of E,. The MSE becomes 
D 

-e= pi 
i = d + l  

Therefore if the eigenvalues pi are ordered 

Pi? * * * 1 P i  2 * * * ~ P D  

(3.28) 

(3.29) 

and using the ai for i <a' < d  as the basis vectors for the linear coefficients yi and using the  
constants 6 ,  for the rest of the basis vectors, the random vector g can be approximately 
represented with minimum MSE by a D X 1 random vector E , 

E =  [it] 
where 

y = A  T g 

T 
bTAd+l,D 

(3.30) 

(3.31) 

(3.32) 

and where 

A d + l , D = ( & + l !  * - ~ & j ?  * - J & D  ) 

For classification purposes, since the (D -d) X1 constant vector & is the same for all z , 
we can just  use the d x1 vector y t o  represent 4 , as given by Eq.(3.31) which is exactly the 
same as the  one given by Eq.(3.2). 

From the above discussion, the approximation representations given by Eq.(3.17) and 
Eq.(3.24) will be t,he same if the random vector z has zero mean. But if z is not a zero mean 
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random vector, the mean squared errors defined in Eq.(3.20) and Eq.(3.28) will be different. In 
the following section, i t  will be shown that  the approximation given by Eq.(3.24) will have 
smaller mean squared error. 

3.3.3 The Choice of the KL Representation 
The two preceeding sections show two different KL representations. We want to compare 

those two representations t o  find the one that has the minimum MSE representation. Before 
making the comparison, we will show tha t  the eigen equation of the covariance matrix E, given 
in Eq.(3.26) implies that  any other set of orthonormal basis vectors will not yield a minimum 
mean squared error representation. We will show tha t  i t  is true, and t o  do this we have to  show 
that 

t max I &ax 

where 
ti=% T E& 

and 
D D 

ti = pi =Trace  E, 
j = l  i = l  

where 3 's are a set of arbitrary orthonormal basis vectors. 

Define a D XD matrix AD as follows 

A g = ( a l , .  . . ,&, . . . 1 4 D )  

where g, is the eigenvector of the matrix E, and define a D X D  matrix VD as follows 

v, = (XI, . . . , X I ,  . . . 7%) ) 

From the eigen equation Eq.(3.26) we have 
C, =AD Diag ( P ,  ) AD T 

Substituting C, from l<q.(3.40) into Eq.(3.36) yields 

ti =zi T A D  Diag (p ,  ) AD T 2, 

D D D  

k =1 j =11 =I 
= vij vil a k j  akl p k  

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

where 
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If we substitute the /?k in Eq.(3.41) by p,,,, we will get the inequality 
D D  D 

j =11=1 k =1 
ti L P m a x  " i j  "il O k j  OkI 

I t  is further known tha.t: 

A D  T A D  = A D  A D  =Io 

(3.42) 

(3.43) 

(3.44) 

where I D  is a D X D  identity matrix. Therefore from the identity given in Eq.(3.44) we have 
D 

E Okj akl =6jl (3.45) 
k =1 

If we substitute the summation in Eq.(3.43) by the one in Eq.(3.45), the inequality in Eq.(3.43) 
becomes 

j =1 

Therefore 

ti SPmax 

for i=l ,  . . . , D .  
Si mil arl y , 

D D  D 

ti >&in " i j  "il Okj  Okl 
j =I1 =1 k =1 

which yields 

ti 2 P m i n  

for i = l ,  . . . , D . Therefore the inequalities in Eq.(3.34) and (3.35) are true. 
Now we want t o  prove Eq.(3.37), using the definition of ti in Eq.(3.41) : 

D D D  D D  

(3.46) 

(3.47) 

But from the orthonorinality and the completeness of the set of the E, vectors, we will havv 

VD vD=vD VD T = ~ D  (3.48) 

which means tha t  
i = D  

i =1 
v i j  Vd '6j, 

Substituting the summation in Eq.(3.49) into Eq.(3.47) yields 
D D D D 

i=l k=1  j = 1  k =1 
F t .  = p k  E akj '= P k  =Trace C, 
J (  

(3.49) 

(3.50) 
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(3.51) 

When we plot those ti 's and pi '8, see Fig.3.1., the cross ouer must exist. 
In the region to the left of the cross over, the eigenvalues Pi will always be larger than t i .  

If for example we select the ai and a up t o  i = k ,  where k is t o  the left of the cross over, the 
mean squared error of the selected set of gi is 

cross over pi 

1 2 : D -1 

Fig.3.1. The plot of Pi and t i .  

D k - 
en ( k )  = p,=Trace E,- pi 

i = k + l  i = l  

and the mean squared error of the selected set of is 
D k 

i = k  +l i =1 
el (k)= ti=Trace c,-Cti 

Since for i up to  k ,  pi is always larger than or equal to  t i ,  then 

e4 ( W I !  ( k )  (3.52) 

For the region to  the right of the cross over, the pi are always smaller than or equal to 1, , 

Now we can proceed with determining which of the two KL representations has the 
which will yield a similar situation as in Eq.(3.52), and therefore the proof is complete. 

minimum mean squared error. It is known that for a random vector g ,  

Rz =E, +mr mz T (3.53) 

Suppose now we select d eigenvectors 4, of the autocorrelation matrix Rs associated with the 
d largest eigenvalues Xi. The MSE will be, rewriting Eq.(3.20), 

D 

i = d + l  
~ R Z =  C X i  (3.54) 



- 17 - 

and this is the same as, using Eq.(3.53), 

D T  T (3.55) 
D D 

eRz== L T R , & =  i T C r & +  4, e% & 
i = d  tl i =d +1 i = d + l  

Following the preceeding discussion, the first summation in the last equality of Eq.(3.55) is 
always larger than or equal t o  the MSE if we select the d eigenvectors 3 of the covariance 
matrix C, associated with the d largest eigenvalues pi, or, 

(3.56) 

This is always true independently of how we select the d vectors &, because these vectors are 
not the eigenvectors of the covariance matrix E,. Moreover, the second summation in the last 
equality of Eq.(3.55) will yield a number that  is always larger than or equal to zero, because ol' 

2 

& * m, m, *4= (& %lz ) 2 0  (3.57) 

Therefore, 

e C z  < eRx (3.58) 

which means that, the MSE of the second KL representation, shown in Eq.(3.24), for a given 
reduced dimensionality d ,  will always be smaller than or equal to  the MSE of the first KL 
representation, shown in Eq.(3.17). From now on, when we refer t o  the KL transform or expan- 
sion we will be referring to the second representation, i.e. the one tha t  uses the eigenvectors of 
the covariance matrix ?Zz. 

The property of KL expansion i.e. 
i = D  i =D 

i = d + 1  i = d + l  
Pi< t i ,  

where the ti are from the set of arbitrary orthonormal basis vectors bu t  not the eigenvectors o f  
E,, implies that  the KL transform yields the best variance or energy compaction. This also 
implies tha t  the representation entropy[l, 12) produced by KL transform is minimum, where I IV 
representation entropy is defined as : 

(3.59) 

where 

Pi p. = ' Trace E, 

If we use for the D xd transformation matrix A in Eq.(3.2) the set of the eigenvectors of 
the covariance matrix C, , the covariance matrix of the transformed vector y will be 

E,=A = D i a g ( B i ; i = l ,  . . . , d )  (3.60) 

which indicates that the resulting transformed vector y has uncorrelated elements. 
The diagonalizat,ic,n of the covariance matrix C, by the KL transform, shown in Eq.(3.60), 

implies an interesting property. If the covariance matrix of the original D x 1 data  vectors z is 
already a diagonal matrix then the KL transformation would be identity. On the other hand, if 
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the original data vectors g are highly correlated which can be indicated by high absolute values 

of the off-diagonal elements of the matrix C, i.e. the absolute value of { C, )ij is close to (but 

never larger than)  ({q{qjj]l ’z where {q is the i th  diagonal element, then the 

diagonalization of the covariance matrix, or the KL transformation, will yield an effective 
dimensionality reduction. We can intepret the high correlation as high redundancy in the data 
representation. Therefore the KL transform method can reduce the dimensionality effectivelly 
by removing the redundancy but  with minimum MSE representation. 

3.3.4 The Physically-Based Linear Transformation of the TM Data - TM Taaseled 
Cap. 

The transformed features which have identifiable physical properties for TM data have 
been introduced by Crist and Cicone[13, 14, 151. They show that  the information content of the 
six reflective bands of the Landsat T M  earth images (see Sec.2 for the spectral characteristics of 
the TM data) lie primarily in a three dimensional space. 

Those three features are refered to  as: 
Brightness, which is the weighted sum of the six reflective bands such tha t  i t  will respond 
to  the change in the total reflectance and those physical processes which affect the total 
reflectance, such as the particle size of the soil. 
Greenness, which is the contrast between the weighted sum of the visible bands and the 
near infrared band. This feature responds t o  the combination of the low reflectance in the 
visible bands and high reflectance in the  near infrared band of the green vegetation. In 
this feature the two longer infrared bands practically cancel1 each other. 
Wetness, which is the contrast of the weighted sum of the visible and near infrared bands 
with the two longer infrared bands. Since i t  has been suggested that  the longer infrared 
bands are stmsitive to the soil and plant moisture, then this feature is expected to be 
responsive to the change of moisture content of the object. 
The brightness arid greenness features support a plane refered to  as the Plane of Vegeta- 

tion and the brightness and wetness features support a plane refered to  as the Plane of Soil. 
These planes are perpendicular to  each other. The TM data are in the space supported by these 
two planes, which is refered to  as the Transition Region, where the position of a datum depends 
on the characteristics of the object represented by that  datum with respect to the physical pro- 
perties of the three features. Besides the three major features, there are three less significant 
features. However, the vast majority of the T M  data  lie in the three dimensional space 
described above. 

The three major features are usually referred to  as the T M  taselled cap linear transforma- 
tion because it is found through the extension of the taselled cap concept used for MSS data(J61 
which states tha t  the MSS data are lie in a two dimensional space spanned by two orthogonal 
features indicating the physical properties of agricultural objects. These TM taselled cay 
features, however,[l3] cannot be found by the KL transform method because the resulting 
features of the KI, transform method do not necessarily have physical intepretations. However 
the TM tasseled cap features are found by first applying the KL transform to the original data  
of the six reflective bands. Those KL features are then rotated two or three at a time while 
maintaining the orthogonality of those features, and associating the variations of the resulting 
rotated transformed data with the physical characteristics of the crop canopy or soil. 

1. 

2. 

3. 
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In terms of data  classification, this linear transformation has a similarity with the one 
found through K1, transform method, both having more concern with data representation, Le. 
the TM taselled cap is concerned with the physical properties ant1 the KL transform is con- 
cerned with the minimum MSE representation, instead of class separations. Therefore these two 
methods may be most useful in the da ta  exploration step. 

3.4 Linear Transformation Based on Scatter Matrices 
Instead of directly using the class conditional density functions to find the linear transfor- 

mation as had been suggested in the General Introduction there is a well known method that  
uses the class mean vectors and covariance matrices. This method is usually called Fisher's 
Linear Discriminant Analysis or Multiple Discriminant Analysis (abbreviated by 
MDA)[17, 18, 19, 201. 

The objective of the MDA approach is to find a vector or a set of vectors a; ,  such tha t  if 
the random vector z is projected on ai the ratio of among class to within class scatter is max- 
imized. 

The objective can be written as, 

where SA is the among class scatter matrix and Sw is the within class scatter matrix. 

3.4.1 Definit ion and Analysis 
The among class scatter matrix SA is defined as 

and the within class scatter matrix Sw is defined as, 
K 

i =1 
s w =  P ( W i  ) cj 

(3.61) 

(3.62) 

(3.63) 

where Cj is the covariance matrix of class w ; .  

Both SA and S, are D X D  symmetric matrices but  SA is at least semi positive definite. 
However Sw is positive definite since it is assumed that  the class covariance matrices, Cj , are 
positive definite. Therefore the within class scatter matrix, Sw , is non singular. 

Maximizing, morc generally, optimizing ai of Eq.(3.61) to  find ai can be done by takilig 
the first derivative of (1; with respect to vector 4; and setting it equal to  the zero vector. This 
yields, 

(3.64) 

(3.65) 

Eq(3.65) is an eigen equation of the matrix Sw-'S,. From this we can draw the conclu- 
sion tha t  there will be D values of ai which satisfy Eq.(3.64). Moreover, from Eq.(3.61), the 
semi positive definiteness of SA,  and the positive definiteness of S w ,  ai is always larger than or 
equal to  zero. 

We can now order the eigenvalues, 
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a l l ,  . * . , >a; 2, . . . , Lao (3.66) 

and select the d eigenvectors 9; associated with the d largest eigenvalues a, and create the 
D X d  matrix A as follows 

(3.67) 1 A = [gl, - - 7 ad 

where - Q ~  is the eigenvector associated wit,h a;, 

From the ratio of Eq.(3.61), the vector c, which satisfies Eq.(3.64) and also Eq.(3.65) is indepen- 

dent of its norm, and therefore we can let the norm, I I g; I I = (4; 
T 

e; ) , equal to  one. 

1 la; I J 2 = ( a i T & ) = 1  (3.68) 

Using Eq.(3.68) and (3.65) we have the relationship 

gi s, -Is* g; =a; 
However, we also can factor the matrix Sw, 

T s w  = ( S p )  ( s w  112)  

(3.69) 

(3.70) 

(3.71) 

where the existences of the factorization of Eq(3.70) and the inverse of the factor given by 
Eq.(3.71) are guaranteed because Sw is a symmetric positive definite matrix. Using Eq.(3.70) 
and (3.71) in Eq.(3.64) yields another eigen equation, 

(3.72) 
T 

(SW -112) SA s w  -%; =a; -1 6 .  

We can again constrain the norm of the eigenvector 4, , 
I I &  I (2=&;Qi=1 

and from this we will have the relationship 

swgi  =1 

Using Eq.(3.75), (3.74) and (3.72) we will have another relationship 

a; SA g; =a; 

We can now select the d vectors ai t o  create the D X d transformation matrix A , 

(3.73) 

(3.74) 

(3.75) 

(3.76) 

(3.77) 
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where 

(3.79) 

and & ; i = l ,  . . . , d are the eigenvectors of Eq.(3.72) associated with the d largest eigenvalues 
ai. Also, since the mai,rix involved in the eigen equation of Eq.(3.72) is symmetric, the eigenvec- 
tors ii are orthogonal Le., 

$; i j  '6jj (3.80) 

Therefore using Eq.(3.78), (3.79), (3.80) and (3.72) we can conclude tha t  

A T SA A =Diag(ai ; i = l ,  . . . , d )  (3.81) 

and using Eq.(3.78), (3.79), (3.76) and (3.80) we also can conclude tha t  

A T S W A = I d  (3.82) 

Thus the transformation matrix A defined in Eq.(3.78) will simultaneously diagonalize the 
matrices SA and Sw. 

The resulting transformation is then 

r = A  T 2: (3.83) 

where y is an d X 1 vector. 
In this MDA method, the class mean vectors are important parameters for class separation 

which consequently the distribution of the data of each class has t o  be unimodal[20]. Therefore 
unimodal analysis of each class is a very important step before applying this method. The uni- 
modality of the distribution of data  of each class can be observed from the class training sam- 
ples, and if the training samples of a class shows that  the distribution is not unimodal then that  
class should be devided into subclasses where each subclasses is unimodal[21] and then those 
classes will be considered as ordinary classes. 

From the relationships among the matrices E,, SA and Sw the transformation matrix ,4 
defined in Eq.(3.78) will diagonalize the covariance matrix E, or the transformed features will 
be uncorrelated. However, the column vectors of matrix A are not orthonormal. This may be 
contrasted with the transformation matrix produced by the KL expansion method which also 
yields uncorrelated features but  the column vectors of the transformation matrix are orthorior- 
mal. 

If Sw =ID , the transformation matrices produced by the MDA and KL expansion methods 
will be the  same. .&o, if the number of classes, K ,  is very large but  the space can still accorno- 
date the scatter of each class, then the scatter of data  of each class around its mean vector 
becomes very small which yields the matrix Sw approaching the zero matrix. In this caw the 
MDA and KL expansion methods will yield the same transformation matrix. 

In general if the number of classes is large the resulting features of MDA method might not 
be accurate[ll] for separating the classes. However, for two equal covariance classes with equal 
apriori probabilities, Ihe resulting feature will give minimum probability of error using a 
minimum Eu c1idia.n dia tan ct: classifier. 

3.5 Singular Value Decomposition Linear Transformation Method 
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3.5.1 Invariant Property of Bayes Classification by Linear Transformation 
For multivariate Gaussian classes,[22, 23) Decell e t  a1 and Peters et a1 have shown the con- 

dition of the linear transformation matrix A such tha t  the dimensionality reduction using the 
matrix A will not change the probability of error. Where the classifier is either the maximum 
likelihood or maximum aposteriori classifier. That condition and the proof will be discussed in 
the following. 

For a D xd full rank matrix A ,  it is given that 
-1 

A ( A  T A )  A Tmz;=mz; 

and 
-1 

A ( A ~ A )  A (cz j -~ )=  ( c p i - ~ )  
where mZi and CZi is the mean vector and the covariance matrix of 3 ewi respectively. 
If we are also given that  

maxi P ( w j  ) P (Z I w j  ) =P (wi  ) P (Z I wi ) 

then for the transformation, 
y = A  T z 

m a x j P ( w j ) p ( y  Iuj)=P(wi)P(J I w i )  

we will have, 

(3.84) 

(3.85) 

(3.86) 

(3.87) 

(3.88) 

or the class assignment of the untransformed vector z and the transformed vector y will be the 
same. 

Before we prove the above result, we want to observe characteristic of a matrix defined as 
follows, 

P = I - &  =I-A ( A  T A ] - l A  (3.89) 

where the matrix A is the one of Eq.(3.84) and (3.85). 

The matrix P is a D X D  symetric idempotent matrix, therefore its eigenvalues are1241 either 
one or zero. 

Assume now we have[l8] a D X 1  vector w such that  

A T g = Q  (3.90) 

then 

Pg =g (3.91) 

or y is the eigenvector of the matrix P with multiple eigenvalues one. 
Assume now we have a D x1 vector y such that 

- v =Ak (3.92) 

is linear combination of the columns of the where > is a d >(1 vector, which means that 
matrix A ,  then 
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Pg =Q (3.93) 

or 2 is the eigenvector of the matrix P with multiple eigenvalues zero and thus the columns of 
A are also the eigenvectors of P with multiple eigenvalues zero. 

Since the size of the matrix A is d X D , therefore there will be d number zero eigenvalues 
and D -d  number of one eigenvalues of matrix P . Hence the rank of matrix P is D -d  . 

Proof of Eq.(3.88) will be given as follows. First we will create a full rank D X D  matrix 
A ,  

A = [ A , R ]  (3.94) 

where the matrix A is shown in Eq.(3.84) and (3.86) and the D X (D -d) matrix R is defined 
=, 

R=P C (3.95) 

where C is an arbitrary full rank D X (D - d )  matrix and the matrix P is given in Eq.(3.89). 
Observe that ,  

-1 
A ~ R = A ~ P  C = A ~  ( I - A ( A ~ A )  A ~ )  C = Q  (3.96) 

which means that the columns of A and of R are orthogonal confirming that the matrix 2 is 
full rank. And since the matrix C is arbitrary, except it has to be full rank, then the matrix R 
is still general. 

We will transform the vector 3 by the matrix 2 , 

(3.97) 

The class mean vectors of 2 is 

but  from Eq.(3.84) we have 

-2' rn . = C T  (nz:-m,; )=  0 (3.99) 

or the class mean vectors of 2 are the same for all classes i.e. they are zero vectors. 
The class covariance matrix of I. is 

-1 C,=R T C , ; I I = C ~  ( I - A ( A T A )  A ) c , ; R =  

-1 
=cT ( c , ; - A ( A ~ A )  AC, . )R  

Substituting Eq.(3.85) into 13q.(3.100) yields 
-1 

c, =c (c, -zzi +LA ( A  A )  A ) R = 
-1 

= C T  ( I - , 4 ( A T A )  A T R = R T R  

(3.100) 

(3.101) 

which shows tha t  the class covariance matrices of 2 do not depend on the class. 
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The class cross covariance matrix between vectors y and 2. is 
-1 

c , ~ = = R ~ c ~ ~ A = c ~  ( c , . - A ( A ~ A )  A * c ~ ~ ) A  (3.102) 

substituting Eq.(3.85) into Eq.(3.102) yields 
-1 

E,. =c ( cZ, -cZi +LA ( A  A )  A * ) A  = 

=cT ( A - A ( A T A )  A ~ A ) = Q  
-1 

(3.103) 

or for every class the vectors y and H are uncorrelated which because of the normality assump- 
tion are also independent. Hence the class conditional probability density function of the 
transformed vectors becomes 

~ ( i  I w i ) = P ( y  I w i ) P ( l  I w i )  (3.104) 

But  Eq.(3.99) and (3.101) show that the class mean vectors and the class covariance matrices of 
vector 2. are not dependent on the classes, therefore 

~ ( i  I w i ) = P ( y  Iwi ) p ( t )  (3.105) 

is full rank, then its determinant will be non zero which means that  it Since the matrix 
is non singular. It have been shown[24] that  for a non singular matrix A , if 

m a x j P ( w j  ) P ( Z  I w j  ) = P ( w i  ) P ( Z  Iwi ) (3.106) 

where the relationship between vectors z and 
However from Eq.(3.104), 

is given in Eq.(3.97). 

P ( w i  ) P ( L  I w i ) = P ( w i  ) P ( Y  Iwi )P(.) 

which means that  if Eq.(3.106) is h u e  then 

max,P(w, ) P ( Y  I w j ) = P ( w i ) P ( ~  I w i )  

(3.107) 

( 3.108) 

(3.109) 

or the class assignment when classifying vectors g will be the same as when classifying Llie 
transformed vectors y , which means that  the probability of error will not change as well. 

3.5.2 Method to Find the Linear Transformation Matrix A 
We want to  find the I 1  X d  transformation matrix A which satisfies Eq.(3.84) and (3.85). 

Decell et  a1 and Peters et  a1 show(22,23] that we can append the class mean vectors and class 
covariance matrices as follows, 

G = 1, - - - , B i K  1-1, - - * E.(-I] (3.110) [ 
which is a D x (K +1) D matrix. 
If the matrix G is not full rank and its rank is d where d < P , then i t  can be decomposed as 
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G = A  B (3.111) 

where A is a D X d  and B is a d X ( K + l ) D  full rank matrices. 
If we do post multiplication of the matrix G as follows 

-1 -1 
A ( A ~ A )  A " G = A ( A " A )  A ~ A B = A  B= G (3.112) 

w.hich shows tha t  matrix A defined in Eq.(3.111) will satisfy Eq.(3.84) and (3.85). 
However there art: still two problems left in finding the matrix A : 

1. How t o  decompose the matrix G following Eq.(3.111) 
2. What if the matrix G is full rank. 

The singular value decomposition method[l8, 25, 261 can be used t o  solve those problems. 
Therefore this method will be called the singular value decomposition linear transformation 
(SVDLT) method, which will be discussed in the following. 

3.5.3 Singular Value Decomposition Method 

matrix as follows, 
The singular value decomposition (SVD) method is a method to  decompose a rectangular 

G = U Diag (Xi1/';i=1, . . . , d )  V T  (3.113) 

where G is a D X L  matrix where its rank is d , d  I D  < L  . The matrix U is the eigenvector 
matrix of the matrix G'G and the matrix V is the eigenvector matrix of the matrix G G . 
The Xi are the eigenvalues of both the GG and G G matrices. For the matrix G defined in 
Eq.(3.110) and assuming tha t  i t  is not full rank i.e. Rank ( G )  = d  ;d  < D  , the transformation 
matrix A can be selected as follows, 

G = u Diag ( ~ ~ ' / ~ ; i = l ,  . . . , t i )  v T =  (3.1 14) 

= A  B 

where 

B = Diag(Xi1/2; i=1 , .  . . , d )  V T  

Thus 

A = U  (3.1 15) 

which is the eigenvector matrix of GG where the eigenvectors are the ones associated with I I C  
non zero eigenvalues X i .  Since the matrix GG is symetric then the columns of the matrih I1  
can always be chosen t o  be orthonormal. 

If the matrix G is in fact full rank Le. there is no eigenvalue Xi which is zero then we can 
assume tha t  the matrix G is not full rank if some of the eigenvalues Xi are small. The assump- 
tion means tha t  effectivelly the small eigenvalues are zero or the effective rank of the matrix G 
is equal to the number of the significant eigenvalues. Therefore we can find the D X d  transfor- 
mation matrix A whose colums are the eigenvectors of the matrix G'GT associated with the 
significant eigenvalues. 
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3.5.4 Geometric Intcpretation and Modification 
For a general situation i.e. distinct class covariance matrices, it is rather unclear what is 

the geometric intepretation of the above linear transformation with respect t o  the invariant of 
the class assignments of the transformed vectors. However for a restrictive case i.e. for equal 
class covariance matrices case, a geometrical intepretation might be clear out. 

For equal covaria.nce matrices case, assuming tha t  the matrices are non singular, we can 
always find a non singular linear transformation which will yield the covariance matrices to be 
identity matrices. This process will not change any class assignment. 

Next we can shift all the data  vectors by the total mean vector defined as, 
K 

(3.116) 

where the vector 2 is the transformed vector of g which yields the class covariance matrices 
which are identity matrices. This shifting will not change the class assignment as well. 

The class mean vectors now becomes, 

(3.1 17) 

where the vector f is the shifted version of the vector 5.  

i.e. i ts  columns are the class mean vectors mii, since the class covariance matrices are identity, 
The matrix G defined in Eq.(3.110) now has columns the shifted class mean vectors only 

c 

(3.1 18) 

which is a D X K  rectangular matzix. 

these K vectors are linearly dependent. Hence the rank of matrix G is, 
Because of the dofinition of the class mean vectors zil shown in Eq.(3.116) and (3.117), 

(3.1 19) 

Situation shown by Eq.(3.119) can have the intepretation tha t  the class mean vectors mi, 
are well distributed, i.e. if D > K - 1  then those class mean vectors lie on K-1 dimensiorial 
space and if K - 1  > D then those class mean vectors lie on D dimesional space. 

However i t  is possible that  those class mean vectors are not well distributed. They may lie 
on the space whose dimension is less than either K - 1  or D . What is the dimension of the space 
occupied by those mean vectors can be indicated by the rank of the matrix G .  And these i n  
turn is the same as thc  number of the non zero eigenvalues of the singular value decomposition 
of the matrix G .  From Eq.(3.113) or (3.114) it is shown that the columns of the matrix (1' i.e. 
the class mean vectors mi,, are linear combination of the orthonormal basis vectors of the 
columns of the matrix U .  Therefore the columns of the matrix U in the decomposition of 
Eq.(3.113) or (3.114) can be defined as the  orthonormal basis vectors which spanned the  space 
occupied by the class mean vectors zAi. 

Thus  the number of the basis vectors Le. the number of the columns of the matrix U ,  
depends on how well distributed the class mean vectors sii. If they are not well distributed 
then the linear transformation without changing the class assignment of probability of error is 
possible. 

With respect t o  the geometric intepretation discussed above, modification of the definition 
of the matrix G given in Eq.(3.110) is in order. What  we want is tha t  the matrix G is not full 
rank. For the restrictive case i.e. the equal class covariance matrices, the matrix G is defined 

Rank(G)=min (D , K - 1 )  



following Eq.(3.118) where its columns are the shifted class mean vaectors given in Eq.(3.117). 
For this case if D :> K-1 then the matrix G is guaranttee not to be full rank i.e. 
Rank ( G )  =K-1. 

For more general case i.e. distinct class covariance matrices, we will still modifiy the 
definition of the matrix G by shifting all thc original data vectors by the total mean vector 
mz , 

& =g -m -z (3.120) 

which yields the shifted class mean vectors, 

E p i  =I!izi -mz (3.121) 

where the total mean vector mz is defined as, 
K 

where ai are the class mean vectors of the original data vectors z . 
The modified definition of the matrix G will be 

r 1 

(3.122) 

(3.1 23) 

With this difinition of the matrix G ,  for the restrictive case i.e. identity class covariance 
matrices and D < K-1, it is guaranttee tha t  the matrix G is not full rank i.e. 
Rank(  G )  SK-1. If the class covariance matrices are not identity but they are equal they 
always can be transformed into identity matrices. More over this definition can be used to com- 
pare this SVDLT method with the MDA method which will be done later. 

3.5.5 Comparison with the MDA method. 
Before we do comparison with the MDA method and in this respect comparisons with any 

other method, we need t o  specify the criteria which are going t o  be used in the comparisons. 
The ideal criterion certainly is the probability of error, however as mentioned earlier this cri- 
terion is very difficult to be used either for design or comparison. 

The singular value decomposition linear transformation (SVDLT) method uses the proba- 
bility of error criterion or more specifically the invariant of the probability of error property 
with the dimensionality reduction, This property can be maintained iff the two given conditions 
are satisfied: 
1. The classes are mu1tiv;iriate Gaussian distributed. 
2. The matrix G defined in Eq.(3.122) is not a full rank makrix. 

If Rank ( G )  = d  , d  < D  , then the invariant of the probability of error property can be 
maintained while reducing the dimensionality from D t o  d ,  using the decomposition of the 
matrix GGT, where C is defined in Eq.(3.122). If this is the case therefore the SVDLT method 
is the optimum one compares to any other method. 

Although the multivariate Gaussian class distribution assumption might be satisfied espe- 
cially for the satellite ground images, but  the second condition i.e. the rank of the matrix G 
may not be satisfied. Even for a restrictive case i.e. equal class covariance matrices, the matrix 
G may be a full rank matrix. Comparison will be done between the SVDLT and MDA methods 
only because both methods use the class parameters i.e. the  class mean vectors and class covari- 
ance matrices in the designs of the linear transformations. However the SVDLT method requires 
a more stringent condition which is the classes have to be multivariate Gaussian distributed, 
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whereas the MDA method does not require that condition. 
One possible case t o  have the same resulting linear transformations of the SVDLT and 

MDA methods is when the class covariance matrices are equal. In this case, i t  is always 
guarantteed tha t  the class covariance matrices can be macle identity by doing non singular 
linear transformation toward the data  vectors. Therefore following the notations of Eq.(3.62) 
and (3.63) in the preceeding section, the MDA method now will require the solution of the eigen- 
value problem of the among scatter matrix 

where the matrix M is defined as, 

(3.124) 

(3.125) 

where the shifted class mean vectors fnei are defined in Eq.(3.117). Noted here is tha t  the within 
scatter matrix S,+ is identity since the class covariance matrices have been transformed into 
identity matrices. 

For this restrictive case the SVDLT method requires the solution of the eigenvalue problem 
of the G G T  matrix. However as shown in Eq.(3.118) the definition of the matrix M shown in 
Eq.(3.125) is the same as the definition of the matrix G . Hence Eq.(3.124) can be rewritten as, 

SA=GDiag(P(w, ) ; i= l , .  . . , K ) G  T (3.1 26) 

Therefore the SVDLT and MDA methods will have the same resulting linear transformation 
matrices in the case of equal covariance matrices and equal class apriori probabilities. This con- 
clusion will also applicable whether the matrix G is full rank or not. 

3.6. Comparisons and Discussions 
1. The  method to  find the linear transformation using the probability of classification error 

criterion, appears to be computationally untractable. The method using the probabilistic dis- 
tance measures does not seem simpler either, although for multivariate Gaussian classes some of 
the probabilistic distance measures have simpler forms Le. only functions of class mean vectors 
and class covariance matrices. But the draw back of this method is tha t  the transformation 
matrix A found by m;urimizing the probabilistic distance measures, is only optimuni for a par- 
ticular reduced dimensionality d .  For different dimensionality, the matrix A has to be searched 
again by maximizing the probabilistic distance measure for the given dimensionality d .  There- 
fore the method using the probabilistic distance measures are more appropriate to be used in 
feature selection than in feature extraction. Where in feature selection, we try to find the best 
group of measurements among all the available measurements t o  classify several classes and this 
information can be used to reduced the number of transducers in later applications. While in 
feature extraction we try to  find the best functional form of the original measurements either 
for da ta  representation or class separation, where in our study we limit the functional form to  
be linear. 

2. Therefore considering the computational complexity, Ghe method to  find the transforma- 
tion matrix A using the solutions of the eigenvalue problems are optimum. More over these 
methods can give the indications of the numbers of the transformed features which could be 
used for the dimensionality reductions. These will be done by ordering the eigenvalues and dis- 
carding the features, given by the eigenvectors, with non significance eigenvalues. This charac- 
teristics of the methods usirig the solution of the eigenvalue problem can be contrasted with the 



- 29 - 

least squared method[%7, 28, 29,301 which is not discussed in our study, where in this method 
the assignment of the reduced dimensionality d depends on the number of classes only. 
Whereas in the methods using the solution of the eigenvalue problems, especially the ones which 
aimed at the class separation such as in the MDA and SVDLT methods, the dimensionality 
reductions not only depends on the number of classes but  also depends among others on how 
the classes are distributed i.e. more specifically how the class mean vectors are distributed in the 
original measurement space. 

3. The KL transform method is the best method in minimum MSE criterion to  represent 
the da ta  in lesser dimensionality. However it is not designed for class separation, therefore i t  
appears tha t  this method is more appropriate for data  exploration step which might include the 
unsupervised classifications such as clustering. In this sense, for TM data, the T M  tasseled cap 
linear transformation is also more appropriate for data  exploration step. 

4. For data  exploration step if we will use the KL transform method t o  reduce the dimen- 
sionality we need to  calculate the covariance matrix of each data set. In other words the KL 
features are dependent on thc (1.lta. On the other hand for T M  data the T M  tasseled cap linear 
transformation is claimed t o  l i t  invariant of the da ta  as long as the data  are TM data. There- 
fore also in term of computational complexity, for the TM data, the TM tasseled cap linear 
transformation is better. 

5. In terms of class separation and simplicity of the procedure, the MDA and the proposed 
SVDLT methods appears t o  be optimal. The objective functions of both methods are functions 
of the class parameters ;.e. the class mean vectors and class covariance matrices. This can be 
contransted with KL transform or TM tasseled cap linear transformation methods, which based 
on data  representation either using minimum MSE criterion or using physical properties of the 
da ta  as the basic considerations. 

6. The MDA and KL methods will give a set of uncorrelated features of the mixture of the 
probabilistics model of the data. However the set of features of the KL transform methods are 
orthonormal while the set of features of the MDA method are not orthonormal. 

7. If the within scatter matrix Sw is identity, which can be caused by the situation where 
the class covariance matrices are equal, the transformation matrices produced by the MDA a n d  
KL transform methods will be the same. It is because the existing relationship between the total 
covariance matrix C, of the data with the among class scatter matrix SA and the within class 
scatter matrix Sw. 

8. Also, if the number of classes K is very large but  the space can still accomodatc the 
scatter of each class, then the scatter of the data around its mean vectors becomes very small 
which yields the withiii scatter matrix Sw approaching the zero matrix. In this case the resrill- 
ing transformation matrices of the MDA and of the KL transform methods will be the sil l l le.  

This kind of situation is reported[31] by Bricker e t  a1 where it is said tha t  when t l i t  M D A  
method is applied and the number of class is increased, the resulting features, afLcr some 
number of class, heconies stable. Our conclusion is that  after some number of class, where the 
number of class is much larger than the original dimensionality D , the addition of more classes 
will not change the covariance matrix C, of the da ta  ao much which yields tha t  those stabilized 
features are those of the KL transform, although this conclusion is neither mentioned nor 
checked in the above report. 

9. In term of probability of classification error, if both the conditions are satisfied Le. the 
classes are multivariate Gaussian distributed and the matrix G in Sec.2.5. is not full rank, then 
the SVDLT method is optimum since the resulting features will not change the class assign- 
ments for maximum 1il;elihood or maximum aposteriori classifier. The reduced dimensionality of 
this method cannot be lower than the rank of the matrix G ,  to  maintain the class assignments 
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in the dimensionality reduced space. If the matrix G is a full rank matrix, then dimensionality 
reduction will be done by assuming tha t  the rank of G is equal to  the number of the significant 
eigenvalues of the decomposition of the matrix G . 

10. For a restrictive case i.e. equal class covariance matrices, the SVDLT method will only 
use the class mean vectors to find the features. In this case, dimensionality reduction without 
affecting the class assignments can be achieved if the class mean vectors are not well distributed 
i.e. the class mean vectors actually occupy a space with lower dimensionality than of the origi- 
nal measurement spacc!. If this is true than the probability of classification error is not affected 
by dimensionality reduction and this is applicable for number of classes more than two. Also in 
this case the minimum weighted euclidian distance classifier can substitute the above mentioned 
two classifiers, where the weights are the class apriori probabilities. This can be contrasted with 
the MDA method which can use the minimum euclidian distance classifier instead of the above 
mentioned two classifier for equally likely two classes only, provided both have equal covariance 
matrices and both clases are Gaussian distributed. 

11. For equal covariance matrices and equal class apriori probabilities, the MDA and the 
SVDLT will yield equal transformations. However both methods s tar t  with different assump- 
tions, the SVDLT assumes tha t  the classes are multivariate Gaussian distributed while the MDA 
only requires that  the distribution of the data of each class is unimodal. In this sense the 
SVDLT method is more restrictive than the MDA method. 

12. The MDA and SVDLT methods both use the class mean vectors and class covariance 
matrices t o  find the linear transformation for the dimensionality reduction. However this can 
represent the lack of generalization capability because of the limited number of class training 
samples and both methods require the estimate of the class mean vectors and class covariance 
matrices. In this case the KL transform might give better linear transformation since the 
number of data  which required to estimate the covariance matrix C, is large i.e. the total 
number of the data. Similar situation has been shown by Muasher and Landgrebe1321 where 
classification accuracy using linear transformation produced by KL transform method is better 
than the classification accuracy from the selection of the features using the probabilistic distance 
measures i.e. the divergence. 

13. If a method to find a linear tr;msformation for dimensionality reduction is optimum to 
separate all available classes then i t  is possible tha t  different transformations for differeri t 
regions of the data  space might be better for class separation. This is because a point in the 
da ta  space might be closed to only several classes among all the available classes and the possi- 
bility of making classijication error is high only for the classes which are close. This possibility 
will be pursued further in Sec.6. 
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4. Dimensionality Reduction for Noisy 
0 bservations 

In most classification procedures, a data  exploration step is required, for example to acquire 
the training samples for supervised classification. If the data to  be processed are suspected to 
be corrupted by additive noise uncorrelated with the data, methods to reduce the dimensional- 
ity will have to consider the characteristics of the noise. However, in the data exploration step, 
the class definitions usually have been finalized. Therefore the methods which will be discussed 
will consider the signal as a single class noisy da ta  set although some discussion of the MDA 
method with noisy data will be given as well. 

The discussion will begin with the well known method Factor Analysis (FA), and an alter- 
native for finding the factors using a minimum MSE criterion will be proposed. Next we discuss 
concisely the  method proposed by Hsu and Womble[l], which is a method t o  reduce the dimen- 
sionality of the noisy data based on minimum MSE where the resulting features are assumed 
orthogonal. This discussion is followed by a proposed alternative method, where the dimen- 
sionality reduction is based on signal to  noise ratio. 

4.1. Factor Analysis 
Suppose one suspects that  the unknown signal, usually called the common factorl't, 31, lies 

in a space with lower dimensionality than that of the observed data  or the observations. The 
full dimensionality of the observation therefore is due to  an additive unknown noise, usually 
called the unique factor. Dimensionality reduction in such a case is t o  try to  recouer the signal 
which is believed to have lesser dimensionality than that  of the observation. Therefore dimen- 
sionality reduction is done indirectly, through the recovery of the signal. 

It is known tha t  uncorrelated additive noise, which is also uncorrelated or orthogonal to 
the signal, will lead to a decrease in the autocorrelation coefficients between elements of the 
observation. This can be shown from the increase in the diagonal elements of the covariance 
matrix of the signal which is also the covariance matrix of the observation. With an increase in 
the diagonal elements of the covariance matrix while the off diagonal elements remain constant, 
the autocorrelation coefficients of the  observation will decrease. This will result in a decrease of 
the redundancy of the information i r i  the observation. 

As was discussed in the KI, transform section in Sec.3, dimensionality reduction can be 
achieved effectively if there is high redundancy in the data  or observation or, equivalently, the 
autocorrelation coefficients of the observations are high. If we assume that low redundancy or 
low autocorrelation coefficients of the elements of the observation are caused by the additive 
noise, then an effort to  discard the noise or to remove the effects of the noise to recover the unk-  
nown signal will yield an effective dimensionality reduction. In this sense, in t h c  following we 
will discuss the method of dimensionality reduction using the very well known nielhod of Faclor 
Analysis, abbreviated by FA. In this method, there is a problem of non uniqueness of th r  fac (or  
and factor loading determinations. Several possibilities to overcome this problem have been 
proposed[2, 31, and a method to determine the factor and factor loading based on niiriiiiium 
mean squared error criterion is proposed. 

4.1.1. Linear Model in Factor Analysis 
The model in the FA method is given as 

where 
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y =D X 1 observable vector 
A =D X d unknown matrix called factor loading 
f = d  X 1 unobservable (hypothetical) vector called common factor or signal 

The random vector 9 is uncorrelated and zero mean and the random vectors f and 9 are also 
uncorrelated. 
The covariance matrix of the observation y is 

C, =A C, A +A (4.2) 

where C, is the covariance matrix of the common factor f and A=diag ( S12, . . . ,6, ') is the 
covariance matrix of the unique factor g . 
If C, =Id then Eq.(4.2) becomes 

C, =AA +A (4.3) 

And also if the covariance matrix o f f  is decomposed as 

Z,=TTT 

where T is a lower triangular matrix[Z], the covariance matrix of y given in Eq.(4.2) will 
become 

E, =LA +A 

which has the same form as the covariance matrix of y given in Eq.(4.3) where 
On the other hand, if the loading matrix A is post multiplied by a d X d  orthonormal matrix 
B , we will have 

= A T .  

( A B )  ( A B )  T = A A  

thercfore the factor loading A is non unique under orthonormal rotation. 
All these non uniqueness problems associated with the FA method might be a set  back, 

but  Iortunately these lion uniquenesses only occur when we want t o  define the factor loading A 
and Llie common factor f . For any non unique factor loading A , the multiplication 

AA =E, -A 

is unique. This uniqueness of the covariance matrix of A f  will be exploited later to  find the 
unique signal or common factor based on minimum mean squared error criterion. Now what has 
to  be estimated are either of the possible matrices A or 2 , or the matrix A from t,he covariance 
matrix of observation E,. 

There are two methods to  estimate the factor loading matrix A ,  the principal facLor 
method and maximum likelihood method. In the following we first will discuss the principal fat- 
tor method. Let the observation vector y be scaled by a matrix C as follows, 

- t ,c-'/2y (4.4) 

where C =diag (ull, . . . , ODD ) and uii is the i t h  diagonal element of C, . 
The covariance matrix of 1 is 

=R, 
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where R, is the coefficient correlation matrix of 3. 
We can express the coefficient correlation matrix R, in a matrix equation similar t o  tha t  of 
Eq44.31, 

R, =PP +9 (4.5) 

From Eq44.5) we then have 

PP =R, -9 

The matrix R, -9 is usually called the reduced correlation matrix, from which the factor loading 
matrix will be estimated. We cannot proceed further before estimating the diagonal elements of 
the reduced correlation matrix PP T ,  which are usually called the communalities, hi 2, 

hi 2=1-Ei 

where ti is an element of the diagonal matrix @. The hi2  terms are bounded as follows: 
O<hi2<1.  
Some of the proposed estimates of the communality hi are(2, 31 : 

(i) The magnitude of the highest correlation coefficient of the variable yi with one of the 
remaining variables, or 

* 2  hi =max I rij I 
i 

for i#j. 
The square of the multiple correlation of yi with the remaining variables, (ii) 

2 1 
si; 

hi = I - -  

Once the diagonal elements of the reduced correlation matrix, P P T = R , - 9 ,  have been 
estimated then decomposition is done as follows 

where hi and 2, are the eigenvalues and eigenvectors of R, -9. 
Then we order the eigenvalues as follows, 

I t , > , .  , . , > h i ? ,  . . . , >hD (4 .7)  

It is expected that  some of the hi will be very small and possibly negative. To maintain the 
semi positive definiteness of the matrix PP T ,  we will select only the positive and largest h, ' s  
such tha t  the sum of those which are selected is almost equal but less than D and then select 
the eigenvectors ri accordingly. 
The estimate of Y will be: 

B = r , ~ l / ~  
- where 
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T o  proceed we have to  check that the elements of the estimate of the matrix J I ,  4, are positive 
or equal to  zero, i.e. 

If Eq.(4.9) is satisfied then the estimate of the factor loading A matrix is 

a =c1/=p 

where the matrix C is defined in Eq.(4.4). 
The matrix a defined in Eq.(4.10) satisfies 

a c-q =H 

(4.9) 

(4.10) 

(4.11) 

where H is a diagonal matrix, see Eq.(4.8), which is a suggested constraint[3], to  get a unique 
factor loading A . 

The other method to  find the factor loading A is the maximum likelihood method. This 
method uses the assumption that the observation vector y is multivariate normal. 
Using the Wishart density(2, 31, the log likelihood function of matrices A and A is 

(4.12) 

where S is the sample covariance matrix. For D 5 n -1 where D is the dimensionality of S and 
n is the total number of samples, S will be non singular with probability one and will have the 
Wishart distribution. The indeterminacy of A up to  a rotation is handled in this estimation by 
a constraint 

(4.13) ^ T ^  A j = A  AA 

where 3 is a diagonal matrix. This will lead to an iterative method 

3A =A A-1 ( s  -8 ) 
A=Diag ( S  -AA ^ ^ T  ) 

Sometimes this iteration does not converge[2]. 
Once the estimate of the factor loading A is found, the common factor L is given by(41: 

&f =a E, -11 (4.14) 

Eq.(4.14) represents the linear regression of y to find f . 
There are two other posibilities[3], the first called the Bartlett's factor score, 

and the second called Thompson's factor score, 

(4.15) 

(4.16) 
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Which one of these three common factor estimates is the best is not clear, and even the 
conditions under which one is better than the rest is not clear. This confusion leads to  an idea 
of finding the factor or the signal under the minimum mean squared error criterion. 

4.1.2. Minimum Mean Squared Error Criterion Based Factor Analysis 
We will define the vector A f in Eq.(4.1) as, 

z = A  f 

The equation Eq.(4.1) now becomes 

Y =z +s (4.17) 

Without loss of any generality, we can assume tha t  the mean vector of y and also of 2 are zero 
vectors. If they are not, we can shift y by its mean vector, since g has been assumed to be a 
zero mean random vector. Using all the uncorrelatedness assumptions of the FA model the 
covariance matrix of y is 

c, =c, +A 
and by observing Eq.(4.3), 2, =Aa 
filter theory[5], the minimum mean squared error estimate of 2 is given by 

is unique, where a is given in Eq.(4.10). From Wiener 

(4.18) 

where 2 is a D X 1  vector. We can apply the Wiener filter method in this scheme because all 
the conditions or assumptions t o  applied to  this method are satisfied by the FA model given in 
Eq.(4.1) and subsequently in Eq.(4.17). The covariance matrix of the estimate f is 

- f =c, E, -ly 

E, =E (2 ) 4, c, -%* (4.19) 

The covariance matrix C, has rank d < D  , because its columns result from linear combination 
of the d linearly independent columns of matrix a . 

Following the approach of the KL transform, dimensionality reduction can be achieved by 
finding the eigenvectors of C, matrix having non zero eigenvalues. There will be d such eigen- 
vectors. Let us define a D X d  matrix B 

B =  (hll * ' Ad ) 

where h i ,  for i=1, . . . , d are the eigenvectors of E, associated with non zero eigenvalues. 
Apply the KL expansion of as follows 

i = d  

i =1 
5 - = %I hi 

where .z, =f hi.  The mean squared error of these two steps is 

e =trE(:c-Z) (2-2) =trE(g-i+i-z) (g - i+ i -k )  
T T 

T T 
=trE(g-i) (g-3) +trE($-k) (9-2) 

= +tr.E(z-A) ( e - k )  +trB(p->) (g-2) 
T T 

(4.20) 

(4.21) 



- 38 - 

We can observe from Eq.(4.21) that  the first term is the mean squared error of the Wiener filter- 
ing, and the second term is the mean squared error of the KL expasion o f f .  Now we will con- 
sider the third term, 

T 
T 

trE (a  4) (f -2) =ttE (z -i) f - t tE (a  -f ) k 

The first term of the right most side is zero because of the orthogonality principle[5, 61, and by 
substituting 2 by Eq.(4.20), the second term of the right most side becomes 

i = d  

i =1 
trE(z-i)kT = trE(g-i)g I T  hh. T = o 

Similarly the fourth term of Eq.(4.21) will be zero also. 
Thus by observing the non zero terms of Eq.(3.21), the mean squared error is 

e = eW + eKL (4.22) 

where eW is the error from the Wiener filtering and eKL is the error of the KL expansion. Both 
errors have been minimized, and therefore the sum of these errors is minimized as well. 

The dimensionality reduction or more precisely the estimation of the commwi factor now 
can be stated as follows 

(4.23) 

The proposed method gives a unique estimate of the common factor f based on the 
minimum mean squared error criterion, in which the dimensionality reduction is achieved since 
the dimensionality of the common factor is less than the dimensionality of the observation. 
This is done in two steps, where i t  has been shown that the total error of the two steps is the 
sum of error in the individual steps. Since each step is based on the minimum mean squared 
error criterion, the total mean squared error is also minimized. 

4.2. Noisy Observation 
In the preceeding section, we discussed the Factor Analysis method in which the additive 

noise components are assumed uncorrelated. Therefore the noise covariance matrix is diagonal 
but  unknown. In this section, the noisy observation is also assumed to  consist of the signal vec- 
tor, a ,  and the additive noise vector, 11, as follows 

y =g +f4 

The noise and signal are also assumed uncorrelated but the noise components are not. Therelore 
the noise covariance matrix is not diagonal. Moreover, either the covariance matrix of the noise 
of the signal is assumed known, so that  the unknown one, because of the uncorrelatedness of 
the signal and the noise, can be estimated by subtracting the estimate of the covariance matrix 
of the observation by the known covariance matrix. With this scheme, in the following we will 
discuss two methods of dimensionality reduction, one of which is done using a set of orthouor- 
mal basis vectors. The one that requires the set of orthonormal basis vectors is found from 
minimizing Ihe mean squared error of the signal representation. The other one is found from 
maximizing the signal to noise ratio on each new variable. 

4.2.1. Minimum Mean Squared Error Based Dimensionality Reduction 
If we would like to  expand the signal vector g using a set of orthonormal basis vectors 

similar to the expansion shown in Eq.(3.24), the resulting mean squared error is produced by the 
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sum of the variances of the signal on the discarded basis vectors plus the sum of the variances 
of the noise on the selected basis vectors. Thus the mean squared error of the expansion is, 

i = D  i = d  i =d 

i = d + l  i =1 i =1 
e = L; ~ ~ 4 ,  + 4, C,P, =Trace E,- d; (c,-c, ) (4.24) 

where hi are the orthonormal basis vectors, C, is the covariance matrix of the signal and C, is 
the covariance matrix of the noise. 

T o  minimize e in Eq.(4.24), the second term in the last equality has to be maximized. Fol- 
lowing the discussion in the KL transform section in Sec.3, the set of orthonormal basis vectors, 
4; , have to  be the eigenvectors associated with the d largest eigenvalues of the matrix C, -E,. 
This matrix is not necessarily positive definite, and therefore some of its eigenvalues might be 
negative. Hence t o  minimize e in Eq.(4.24), the selected eigenvectors have to  have positive 
eigenvalues. This is exactly what has been shown by Hsu and Womble[l]. 

For classification or, more precisely, dealing with more than one class of signals, the above 
authors[l] suggested tha t  the average of the covariance matrices of the signal from each class 
and the average of the covariance matrices of the noise from each class are to  replace the covari- 
ance matrices Zz and C, respectively in Eq.(3.24). The eigenvectors and eigenvalues are then 
t o  be found accordingly. Our comment on this idea is that  the resulting basis vectors might not 
be the best for classification because the suggested procedure neglects the class mean vectors 
which are often the most important class parameters in classification. 

4.2.2. Signal to Noise Ratio Based Dimensionality Reduction 
As an alternative to  the preceeding method, in the following a method is proposed whose 

basic idea is to  find a set of vectors such that if both the signal and the noise are projected on 
these vectors, the ratio of the variances of the signal and the noise is maximized. 

Suppose 4; is the intended vector. The projection of the signal 3 on a; is given by 
m 

(4.25) 

The variance of zi is 

gi C, a; (4.26) 2 1 T 1 LtjTE(z-mz) (z -mz)  4= ) = I I & I I  I la; I I Si =E (ti -mzi 

where mzi is the mean of zi and rnz is the mean vector of 3 .  

Similarly the projection of the noise on a; is, 
m 

a; ’ n 
I lai I I 112 Pi = 

The variance of p i  is 

The signal to noise ratio on the vector ai is 

(4.27) 

(4.28) 

(4.29) 
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The right hand side of Eq.(4.29) looks similar to what is called RayIeigh quotiettt[7]. The solu- 
tion of this maximization requires that  be the eigenvector of the matrix C,-'C, associated 

with the largest eigenvalue and the ratio - is this eigenvalue. One property of the matrix 

C,-'C, is tha t  if' the matrix C, is (semi) positive definite then the eigenvalues of C,-'C, are 
always larger than (or equal) to  zero[3]. Since both C, and C, are covariance matrices, at least 
E, is semi positive deiinite, and E, has to be positive definiteto be nonsingular. 
If we do the ordering as follows, 

si 

Ni 

Sl si SD -2 , .  . ., 2->, . . . ,>- 
N1 Ni - ND 

(4.30) 

si si 

Ni Ni 
We can select ai's associated with d largest - or d non zero -, and the transformation 

will be 

- t = A T y  (4.31) 

where g is a d X 1 vector, and 

A = ( % , . . . , & )  

and y is the D X 1 noisy observation vector. 
si 

Ni 
Another alternative is, instead of directly maximizing - in Eq.(4.29), a prewhitening pro- 

cess is initially applied t o  the noise and is then followed by the maximization of the signal to  
noise ratio. This procedure amounts to simultaneous diagonalization of the matrices C, and 
C, (8,9] which will be shown next. 

apply the following transformation 
For the prewhitening process we would like to  find a D X D  matrix Q such that  if we 

Q T y = Q T z + Q  T n (4.32) 

the covariance matrix of the random vector Q 
Define a D X D  matrix P as follows 

is an identity matrix. 

P = ( E I ,  * E ,  - * .,e0 ) (4.33) 

where the eigenvectors of C, are given by g, , and they are known to be orthonormal. 
From the eigen equation of matrix C, we have 

P TC, P=Diag ( ai ) (4.34) 

where ai are the eigenvalues of C,, which are arranged according to  their associated eigenvec- 
tor in the matrix P given in Eq.(4.33). 

Pre and post multiply the left hand side of Eq44.34) by a matrix Diug ( ai- l I2)  to yield 

Diag (a, -l/' ) P C, PDiag (a i  -l/' ) =ID (4.35) 

The covariance matrix of the random vector Q T~ is 
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~ , = Q ~ E ~ Q  (4.36) 

Observing Eq.(4.35) and (4.36), we can conclude that the matrix Q tha t  will make the covari- 
ance matrix of the random vector Q 11 an  identity matrix is 

Q =PDiag (a i - ' / ' )  (4.37) 

Also the covariance mittrix of the random vector Q g is 

E, =Q E, Q 
where the matrix Q is defined in Eq.(4.37) 

The signal to noise ratio to be maximized can be written as 

3i -&  T EQz&' 2; TzQz& - -- - - T -  
> j T  EQa& li l i  

(4.38) 

(4.39) 

This maximization will show that & are the eigenvectors of the matrix CQz =Q C, Q , and 

tha t  the associated eigenvalues are ?. Also, it can be observed tha t  the variances of the noise 

on all of the 2; vectors are equal to 1, and all components of the noise vector Q are uncorre- 
lated, hence Q E is white noise. Therefore the signal t o  noise ratio in Eq.(4.39) is equal t o  the 
variance of the signal only or 

si 
Ni T 

si - 
r = S ;  
Ni 

(4.40) 

(4.41) 

and select d eigenvectors 2; associated with the d largest 3i, dimensionality reduction can be 
achieved. 
Define a D ~d matrix A ,  

. . ,&) (4.42) 

The transformation will be 

where 2 is a d X 1 vector arid G =PDiag (a,-'/') A . 
We would like to  observe the resulting covariance matrix of y after the transformation, i.e. 

the covariance m;itrix of the random vector G 3. Before we proceed we would like to define a 
D X D  matrix A D  as follows 

;Io = (31, . . . , &, . . . , 5 )  

and also define a D X D  matrix GO, 

GD =PDiag (cx;-"') AD (4.44) 
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The transformation of y similar to  the one given in Eq.(4.43) is 
&=GD T ~ = G D  T z + G D T ~  

c , = G , ~ x , G ~ = A ;  T ~ Q z ~ a  
The covariance matrix of the random vector CD g is 

(4.45) 

(4.46) 

where the last equality in Eq.(4.46) is found from using the definition of matrix Q given in 
Eq.(4.37) and of the definition of matrix C Q ,  given in Eq.(4.38). However the columns of matrix 
X D ,  as shown in Eq.(4.44), are the eigenvectors of the matrix C Q z ,  and the matrix Cz in 
Eq.(4.46) becomes 

Ct = A i  C, A; =Diag (3, ) (4.47) 

The covariance matrix of random vector GD is 

C,=GD T C ,  GD=A; T D i a g ( a , - 1 / 2 ) P T C n  P D i a g ( a , - 1 / 2 ) A a  (4.48) 

But the columns of the matrix P as defined in Eq.(4.33) are the eigenvectors of the matrix E , ,  - 
and hence 

Therefore from Eq.(4.47) and (4.49), we can conclude that  the matrix GD diagonalizes the 
matrices E, and E, simultaneously, and more over since z and a are uncorrelated, the covari- 
ance matrix of the random vector GD 

C, =C, +Cn =Diag (3; +I  ) (4.50) 

or the covariance matrix of the random vector GD T y  is diagonal which means that  the com- 
ponents of the random vector GD 

One other thing worth noting is tha t  the diagonalization of the covariance matrix C, is 
done with matrix Go which is not an orthonormal matrix by the defiiiit,ioii given in Eq.(4.44). 
This should be contrad,ed with the diagonalization of the covariance matrix of the KL transfor- 
mation, whose transformation matrix is an orthonormal matrix. 

y is 

y are uncorrelated. 

4.3. Relationship to Classification 
From the above sections, it is clear that  the FA method and the subsequent noisy obscrva- 

tion dimensionality reduction methods are intended for processing single class random vectors. 
Regarding classification, there is a report[lO] that shows a possible relationship between the FA 
method and the MDA method (discussed in Sec.3). This report says tha t  the FA method can 
substitute the MDA method. This is a very useful idea since the MDA method requires that  Llie 
class conditional mean vectors and covariance matrices to  be known and the FA method only 
requires knowledge of the covariance matrices of the mixture data. However the condition that 
allows this substitution is rather difficult to  satisfy[lO], as i t  requires the uniqueness of the fac- 
tor loading A as given in Eq.(4.3). However, the MDA method indirectly can also reduce the 
effect of the  noise since from the relationship, 

c, =E, +E, =s, +sw +E, 
where SA and Sw are the among class scatter and within class scatter matrices respectively, 
defined in the MDA method. We can lump the matrices Sw and E,, 
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and substitute this into the preceeding equation yielding, 

c, =s, + I s ,  
and apply the MDA method. By doing this, what we have done is to lump the effect of the 
noise which tends t o  enlarge the within class scattering of the data into the within class scatter- 
ing of the non noisy data. 

Besides all the  above draw backs with respect t o  classification, the application of the FA 
method or more generally the application of the noisy observation dimensionality reduction 
methods discussed above toward satellite data has not been thoroughly studied. The  capability 
t o  estimate the noise covariance matrix of the FA method and the capabilities to reduce the 
effect of the additive noise components of those noisy observation dimensionality reduction 
methods might be attractive for TM data  since due to  the higher spatial resolution of the data  
acquisition system of the TM data, the class conditional variances are expected to  be large 
which causes the data  to appear to be more noisy. The application of these methods might 
yield a better classification error. 
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6. A Unified Approach to Dimensionality Reduction 
by Linear Transformation 

In Sec.3, several methods for finding the D X d  linear transformation matrix A were dis- 
cussed. The first two methods, i.e. the one based on probability of error, P, , and the onc based 
on the probabilistic distance, have objective functions which are functions of the matrix A , 
although unfortunately, the solutions appear computationally untractable. The other metlivds 
do iiot have objtxtive functions which are explicit functions of the matrix A .  Instead their 
objective functions are functions of a set of vectors. We would like to modify these objective 
functions so tha t  they are functions of the D X d matrix A .  By doing this we will have a 
unified approach to  dimensionality reduction by linear transformation, as each method will 
involve optimizing an objective function with respect t o  the matrix A . 

5.1 Minimum Probability of Error and Maximum Probabilistic Distances Based 
Objective Functions 

We will first rewrite the objective functions which are already functions of the matrix A . 
The one that  is based on probability of error, from Eq.(3.12), is 

J ( A )  = P ,  ( A )  =s { 1-maxi P ( w i  I A 'z) ) p  (A  T g )  d ( A  'g) ( 5 4  

The one tha t  is based on the probabilistic distance method, from Eq.(3.14), is 
K K  

J ( A ) = ~  C P ( w i  ) P ( w j  ) ~ ( i , j , ~ )  
j =lj =1 

(5.2) 

where J (  i,j,A) is the probabilistic distance between classes wi and w, from Eq.(3.13) for a 
particular transformation matrix A , where the relationship between the transformed vector y 
and the original vector x is given in Eq.(3.2). 
The objective function J ( A )  of Eq.(5.1) has to  be minimized and tha t  of Eq.(5.2) has to be 
maximized. The optimizations are done with respect t o  the matrix A . 
5.2 KL Traneform Based Objective Function 

For the KL transform method we will start with Eq.(3.25) 

(5.3) 
T 

(2-k) (2-2) 

Substituting 'i. from Eq.(3.24) and by the orthonormality of the ai vectors, we will have 

D 2 
>=E( (yi-bi) 1 

i = d  +l I I (5.4) 

To optimize with respect to  b i ,  we take the first derivative of 2 w.r.t. b j  and set it to  zero to 
yield 

where m =E 2 is the mean vector of iz. ( 1  
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Substituting b; from Eq.(5.5) into Eq.(5.4) and performing the expectation yields 
D 

i = d + l  

T e =  a; C,a, 

and this is the same as 
D d 

i =1 i =1 
e = l& Czg; - g, C,Z, 

Putting the summation into the Trace form yields 

Ik  =Trace Xz -Trace ( A  C, A )  

where C, is the covariance matrix of g defined as 

E,=& { (2-m) (2-m) (5.7) 

and the columns of matrix A are the orthonormal vectors ai for i =1, . . . , d .  
To minimize the representation error 2, the second term on the right hand side of Eq.(5.6) has 
to be maximized. Moreover the vectors ai are orthonormal, and therefore the objective function 
as a function of the D X d  matrix A will be 

J (  A ) = TW ( A  c, A )  (5.8) 

with the constraint, 

A T A  = I d  

6.3 MDA Based Objective Function 
For the MDA method we will start  with the objective function of Eq.(3.61) 

Substituting gj from Eq.(3.74) yields 

(5.9) 

(5.10) 

- T *  a, = 
a; a; 

(5.11) 

where $; is defined in Eq.(3.73) and Sw-'I2 is defined from the factorization of Sw given in 
Eq.(3.70). The right hand side of Eq.(5.11) is independent of the norm of the vector 4, since 
this norm can be factored from both the numerator and denominator and cancelled out .  Thrre- 
fore we can constrain the norm of ii i.e. rewriting Eq.(3.75) 

(5.12) - T -  I I&  I I=&, 
which means tha t  

3 swg;  =1 

And now we have the objective function 

(5.13) 
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(5.14) 

with constraint, 
& T Swg,=l  

Therefore we can write the objective function as a function of the D X d  matrix A , using 
Eq.(5.14) and Eq.(5.13), 

J ( A ) = T r a c e  ( A  SA A )  (5.15) 

with the constraint that: 

{ A T S , A }  =I 
II 

(5.16) 

where the D X d  matrix A has as its columns the vectors gi;i=l,  . . . , d ,  and the diagonal 
elements of the symmetric matrix A S w A  are one. The objective function of Eq.(5.15) has to 
be maximized. 

It is tempting to  the constraint that, A Sw A =Z,, but  this constraint will be too reslric- 
tive and is not necessary. For, the maximization of the objective function of Eq.(5.15) with the 
constraint of Eq.(5.16) will yield a matrix A such tha t  A 

Unfortunately, the matrix A found from the eigen equation Eq.(3.65) can not be put into 
an objective function which is a function of the matrix A .  If we follow the steps used to get to 
Eq.(5.15), we will fail because of the lack of symmetry of the matrix Sw-lSA. 

S w A  =Id as shown in Eq.(3.82). 

However, we can generalize the constraint of Eq.(5.16) so that  

A T S W A  =g,>O 1,; (5.17) 

where g, is a constant. This means tha t  the columns of the D X d transformation matrix A , _a,, 

will have their directions and lengths or norm, I I a, I I , satisfy the constraint of Eq.(5.17). On 
the other hand the norm of ai will not affect the ratio of Eq.(5.10). Therefore, we can conclude 
tha t  the constraint of Eq.(5.17) will not restrict the search for the vector a, t o  optimize 
Eq.(5.10) for all possible vectors 2 , .  In factll], the constraint of Eq.(5.17) 

(5.18) 

where 4, is the i t h  column of the D X d matrix A , is another definition of norm. 

The modification has to follow the ratio given in Eq.(5.10) which yields 
Since the constraint has been made more general, the objective function must be niodilied. 

J ( A ) = T r a c e ( A T S A A  D i a g ( l / g , ; i = l , .  . ., d ) )  

where the constraint, rewriting Eq.(5.17), is 

(5.19) 

(5.20) 

The objective function J ( A )  of Eq.(5.19) which has to be maximized, constrained by 
Eq.(5.20), will have tlie objective function J ( A )  of Eq.(5.15), constrained by Eq.(5.16), as a 
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special case. Moreover the objective function J ( A )  of Eq.(5.8) constrained by Eq.(5.9), i.e. the 
objective function of the KL transform method, can also be viewed as a special case by 
redefining the matrices SA of Eq.(5.19) as Zz of Eq.(5.8) and Sw and gi of Eq.(5.20) as the 
identity matrix, I d ,  and 1 of Eq.(5.9) respectively. 

6.4 Singular Value Decomposition Linear Transformation Based Objective Function 
In this method, the matrix A , which is searched, is the factor of the singular value decom- 

position defined in Eq.(3.114) of the matrix G defined in Eq.(3.123). From Eq.(3.115) and the 
discussion in Sec.3.5.3, the columns of the matrix A are the eigenvectors of the matrix G G T  
associated with nonzero eigenvalues or with significant eigenvalues. 

as follows, If we write the eigen equation of the matrix GG 

GG T g,=Xia, (5.21) 

is a symetric matrix, so we can always make the eigenvectors a, orthonormal. The matrix GG 
Multiplying both sides of Eq.(5.21) by g; will yield, 

a G G ~ ~ ~ = x ~  (5.22) 

where from the eigen equation in Eq.(5.21), the  norm of the eigenvector gi is 

I la, I )=aiT&=1 (5.23) 

Therefore, from Eq.(5.21), (5.22) and (5.23), the unified objective function will be, 

J (  A ) = T W ~  ( A  GG A ) (5.24) 

with constraint 

( A ~ A ) , ~ = I  (5.25) 

The  above objective function has to  be maximized. Moreover, we do not constrain the columns 
of the D X d  matrix A to  be orthonormal because the method does not require this, as dis- 
cussed in Sec.3.5. However, the orthonormaiity of the columns of the matrix A is the result of 
the symmetry of i,he matrix GG T. 

If the matrix G is not full rank and we only want t o  reduce the dimensionality down to 
the rank of the matrix G ,  then for the rank of the matrix G is d ,  the matrix A will only havc. 
d number of columns. We will not add the number of the columns of the transfurinaLion 
matrix A with eigenvectors with zero eigenvalues. 

Thv general similarity of the objective functions of the methods given from Sec.5.2 t o  5.4 
occurs because all of ifhe methods, as discussed 
metric matrices. The maxiniizations of the trace 
associated with the d largest eigenvalues. 
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6. Space Variant Linear Transformation 
In the preceeding sections several linear transformations have been discussed. Some of 

them use class conditional information with an objective that  the resulting linear transformation 
have high capability of separating classes with a smaller dimensionality. However all of the dis- 
cussed methods use one linear transformation for the entire raw da ta  or measurement space. 
The use of one linear transformation for the entire raw data  or measurement space will be 
referred t o  as the space invariant linear transformation. 

In the following we will propose a method which will use different linear transformations 
for different regions of the data space. The motivations for proposing this idea are : 

1. It  has been shown[l, 21 tha t  the classification error is most affected by points close to the 
decision boundaries. 

2. For more than two classes there is more than one boundary, so it is possible that  a point 
is close to the boundaries of some of the classes but  far from the boundaries of other classes. In 
this case the linear transformation at tha t  point can be designed t o  separate only the classes 
whose boundaries are close to the point. 

3. Following the idea given in 2., the design of the linear transformation at each point will 
involve only a subset of classes. This amounts to  discarding irrelevant classes and it is expected 
to yield a more accurate linear transformation for the separation of the involved classes. The 
involved classes are therefore the classes which are close t o  the point to be transformed. 

T o  implement this idea several problems are encountered, including: 
1. How do we know that  a point is close to the boundaries and which classes are close to 

tha t  point?. This problem leads to  the definition of a preliminary space ( abbreviated by PS ) 
which will be discussed below. The processes applied on the PS to solve these problems will be 
discussed in Sec.6.2., 6.3. and 6.4. 

2. For the involved classes i.e. the classes considered close t o  a point, what is the appropri- 
a te  linear transformation?. The choice is basically the one produced through the MDA method 
which has betn discussed earlier. This problem will be discussed concisely in Sec.6.5. 

In Sec.6.6. we will discuss the final classification step and two possible sources of 
classification error will be discussed in Sec.6.7. In Sec.6.8, a comparison with the space invariant 
linear transformation method will be discussed. 

While the details will be given in the following sections, the general approach in the space 
variant linear trailsformation method consists of two steps: 

1. Performing a space invariant linear transformation. In this step, a small number of 
features which provide the best separation will be retained. This small number of features is 
the space which will be called the Preliminary Space. The linear transformation in this step is 
tha t  produced by the KL expansion method. 

2. Adding additional features when needed by a space variant linear transformation. The 
linear transformation will be applied t o  the features which are not retained in the preceeding 
step. The features which are not retained will be called the Complementary Space ( abbreviatpd 
by CS ). 

For completeness, we will define the Total Space ( abbreviated by TS ) as the space 
spanned by all the featmres produced by the KL expansion in the above first step. 

6.1 Processes on PS 
In general there will be two classes of processes on PS: 
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1. The preprocesses whose objectives are : 
a. To choose the threshold parameter t ,  as described in Sec.6.2. The threshold t is used t o  

indicate whether an uriclassified point is close to decision boundaries. 
b. T o  choose groups of classes in which the classes, which are members of a group, are con- 

sidered close, as described in Sec.6.4. 
2. The processes applied to  the unclassified data: 
a. Performing the classification. 
b. If the classification indicates tha t  the point is close to  the decision boundaries then 

selecting one of the groups produced in process 1.b. above for tha t  point. 
The calculations done in the PS have to be computationaly simple, and therefore its 

dimensionality has to  be low but with good class separation. The features of the KL expansion 
method will be used as TS and the first few features with the largest eigenvalues will be chosen 
as PS. The KL expansion method is chosen because the number of classes at this step is still 
large. 

6.2 Error/Reject Relationship on PS 
Classification as mentioned in the preceeding section, Sec.6.1., will be done as follows. For 

point a in PS, where d is the dimensionality of PS, the classification rule is the one that  
minimizes the probability of error i.e. the maximum aposteriori probability, P (w, I gi ) , 
classification rule and will be applied as follows, 

Assign gi to  class wi iff : 

P ( w i  I g d ) > _ P ( w j  la )  i # .i (6.1) 

and 

The probability of error using this classification rule is(2, 31, 

p ,  < t  (6.3) 

If the  inequality of Eq.(6.2) is not satisfied, it means that  the point is close t o  decision 
boundaries and requires further processing. Proper choice of t will prevent excessive 
rlassification error[3, 4, 51, ;s shown by Eq.(6.3). However, this is accomplished by substituting 
a rejection for a decision. The value of t will affect the rejection rate i.e. the smaller the 1 the  
higher the  rejection rate which means iiiore points need further processing. The relstioiisliip 
between probability of error, P, ( t )  , and rejection rate, R ( t )  , has been given by Chow[3] : 

P, ( t ) = - p ? ( 7 )  ; 0<&t (6.4) 
r 

which is an upward concave function. Since for a large number of classes the closed form of 
H ( t )  is difficult to  find, we can approximate R ( t )  by a piecewise linear approximation, as 
shown in Fig.6.1., where the value of R a t  t =ti is found by performing the classification using 
the rules given by Eq.(6.1) and (6.2). In this classification, we can use unlabelled points, and 
count the number of points rejected for several values of t ,  for the associated rejection rate 

R ( t 1 ) -  
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'I 

11 
R 

Fig.6.1. Piecewise Linear Approximation of R ( t )  . 

If we substitute the above piecewise linear approximation into Eq.(6.4) we will have 
i 

pe ( t i  ) = E  J t ( ~ ) d ~  
j =lR c7 

where 7, is the interval R (ti ) < R  S R  ( t j - l ) .  From Fig.6.1., we note that  to=O and 

R ( t o )  =l. The functions t ( R )  within the interval -yi are linear. Thus from Eq.(6.5), we can 

find the approximate probability of error on PS without rejection, Peps ,  by choosing ti  =-. 

If Peps is too large then we can increase the dimensionality of PS, 2 .  In the following sec- 

K -1 
K 

tion we will discuss how t o  assign the value of t .  

6.3 Claeeification Threshold on PS 
We will assign 3~ to a class if the largest aposteriori probability satisfies the inequality of 

Eq.(6.2). However we want to  choose the threshold 1-t such tha t  the probability of error based 
on classification on PS, is approximately equal to the probability of error based on classification 
on TS. Therefore we need to know the approximate probability of error on TS, P e ~ S .  For this 
we will define a monotonic approximation relationship between P, and the dimensionality as 
follows. We first will order the KL features by the eigenvalues Pi : 

P i 2  ' . >Pi 2 * * LPD (6.6) 

The monotonic approximation relationship will given as follows 

P e p s  =-PITS P 

C P i  
i = l  

where PerS = approximation of probability of error on TS and 
D 

i =1 
B= Pi  
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The approximation given by Eq.(6.7) says tha t  the larger the eigenvalues p i ,  the  smaller 
the probability of error if the associated feature is used in the classification. This is the 
approach generally used in a feature selection process. 

Given P e p s ,  using Eq.(6.7) we can determine PeTs. Now the choice of t is such tha t  

p e p s  =P, TS =Pe ( t 1 (6.9) 

where p e p S  = the probability of error on PS with the rejection threshold 1-t , with t fouiid 
using Eq.(6.5). Eq.(6.9) says tha t  t is chosen such tha t  the probability of error on PS, will be 
approximately equal to the probability of error on TS. 

6.4 Selection of Classes Considered Close 
As mentioned in Sec.6.1. point 2. for a point ~2 on PS which is close to  a decision boun- 

dary i.e. which does not satisfy the inequality of Eq.(6.2), we need t o  know the classes which 
are close t o  that  point so tha t  we can provide a linear transformation for these classes. The ideal 
measure is the sum of the largest aposteriori probabilities which satisfies the threshold, 1-t , 

C P ( w ;  I ) 2 1 - t  
i ck 

(6.10) 

where k represents the group of classes with the largest aposteriori probabilities. With this 
measure we know tha t  the point z,j is a member of the classes wi E k f h  group with probability 
of error not larger than t . However this approach is difficult to  apply because : 

1. We need the information for group k before classification so we can determine the linear 
transformation. 

2. The number of possible groupings of classes will be too large. 
A possible alternative is to use the probabilistic distance measure, Le. the Lissack-Fu dis- 

tance measure(1, 21. For classes wi and w j ,  it is given by 

J, ( w i , w j ) = J I P ( w i ) p ( z  Iwi)-P(wj)p(g I w j )  I rp l - '  ( z ) ~ z  (6.11) 

where for the parameter s "1, it becomes 

~ l ( " i , W j  ) = ~ I p ( w i  ~ z ) - ~ ( w j  1x1 1 (6.12) 

by assumming tha t  p (g) never goes to  zero for all g . The distance J1 ( w ,  ,wj ) of Eq.(6.12) has 

a direct relationship with the probability of error for two classes case[l], Le. 
P. .  =- 1 [l-J, (0; , W j  ) ] 
I' 2 

(6.13) 

Because of this property, we will choose the distance meitsure of Eq.(5.12) as the distance 
between two classes, wi and w j  . For multivariate normal classes, this can be estimated by( l ]  : 

1 Nij 

3,  (wi  ,wj ) =- tanh 
N i j  k = l  

where 

(6.14) 
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s n d  Ni, =N, +N, is the sum of training samples from classes w i  and w, . 
We have the distances of each pair of classes 80 for a particular class we know the classes 

which are close. We can limit the number of classes that  we consider to be close for any particu- 
lar class. The selection of the close classes to a point g then depends on the classification on 
PS. The group of close classes to a point 4 is defined to consist of the class with the largest 
aposteriori probability on PS and the classes which are close to this class. With this scheme we 
will have at most K groups of classes and they can be identified before the classification. 

6.5 Linear Transformation for the Close Classes 
Basically we will use the MDA method with some modifications to determine the transfor- 

mation for close classes. The linear transformation will be designed t o  operate on the elements 
of the point which lie on the complementary space, CS. The modifications are needed since now 
we deal with a group of classes but  not with all available classes and we proceed as follows 

p k  (wi ) = $ k P ( W i  ) (6.15) 

where +k is a constant for the k f h  group such that  

where p k  (wi 1 is modified apriori probability of class wi given that  wi E k t h  group. 

The group mean vector of the k f h  group on CS 

m k C S  =cpk ( wi ) miCS 
i ck 

The among group scatter matrix becomes ." 

The within group scatter matrix becomes 

$Wk =cak ( wi ) ciCS 
i t k  

(6.16) 

(6.17) 

(6.18) 

(6.19) 

where rnics is the subvector of the mean vector of class w i ,  mi, and Cics is the submatrix of 
the covariance matrix of class w i  , Ci , associated with CS. 

We will have at most K linear transformations and the choice of thv transformation for a 
point depends on which class has the largest aposteriori probability at the classification on PS. 

The transformed point will be 

(G.20) 

where a is an ( d  +rk ) x 1 vector, rk is the dimensionality of the transformed point on CS for 

the k I h  group, gD -2 is the element of point a on Cs and f i k  is the ( D  -2) X rk linear transfor- 
mation matrix resulting from the applying the MDA method to  the k f h  group. 
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6.6 Final Classification 
For each a given in Eq.(6.20) the classification rule to  be applied is also the maximum 

aposteriori probability for classes wi E k " group. A t  this point not all of the available classes are 
involved so some modifications have to  be made. The mixture density of zi for the k f h  group 
is 

P(g&)=C'k  ( w i ) P ( z i  I w i )  
i r k  

where the modified apriori probability pk (w, ] is as given in Eq.(6.15). 

The aposteriori probability of class w; e k f h  group is 

where 

(6.21) 

(6.22) 

(6.23) 

where p (gik ) is given in Eq.(6.26) and 

For a multivariat,e normal vector the density function p ( a  I iq ,w, ) can be found with the 

method given by Srivastava and Carter[6], and to calculate P ( w ,  1 
which has been calcula.ted on PS. 

I ) we can use p (iq I w, 

6.7 Sources of Errol- in the Final Classification 
There are two possible sources of classification error in the final classification : 
1. The  point is close to  the boundaries of the decision rule. 
2. The  point may not belong to the group of classes i t  has been assigned to. 

The  first source of error can be detected if the largest aposteriori probability is small. However, 
this indicates tha t  there is a high probability tha t  the point belongs t o  classes of the group 
where the point is assigned to initially. For the second source of error, the largest aposteriori 
probability is possibly high. However, tha t  point maybe too far from the class mean vector of 
the class t ha t  has the largest aposteriori probability. This fainess  can be detected by assigning a 
measure of class occupation. For exaiiiple, if a point is assigned to  the k f h  group and the largest 
aposteriori probability is of class w, c k t h  group, then tha t  point is considered too far from the 
class mean vector of the class wi ck I' or considered as not belonging t o  the k t h  group if the fol- 
lowing inequality is not satisfied[7], 

(6.25) 

For ~k a multivariate normal vector, the left hand side of Eq.(6.25) is distributed ~ ~ i + ~ ~  and 
the value of Et; can be found by defining that yk will be rejected if the probability of the left 

-1 (& -m&i ) (Yk -myki ) 5 Eki  
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hand side of Eq.((i.25) is larger than a certain value i.e. 

(6.26) 

where &i can be found from a x 2  table given the value 7. 
Between the two possible sources of error, from the overall strategy, the second is more 

important since it says tha t  the point yfr might not come from the k’* group, therefore further 
processing needs to  be done. This can be done by applying a clean up process on the image 
space, i.e. doing majority rule classification on an image block for tha t  particular point. 

8.8 Comparisons with the Space Invariant Linear Transformation Method 
The disadvantage of the proposed procedure is certainly in the complexity of the computa- 

tion as compared to the space invariant linear transformation method. However it can be bal- 
anced by several less complex calculations which are : 

1. For a probability of error approximately equal t o  that  on the total space,TS, some of the 
da ta  are classified on a simpler space i.e. on the preliminary space, PS, whose dimensionality is 
smaller than the TS and also smaller than the one which is designed using the space invariant 
linear transformation method. 

2. The  space variant linear transformations which are to be used on the complementary 
space, CS, for each group of classes, may have less dimensionality as compared to the space 
invariant h e a r  transformation method, i.e. d + r k  Scf where (i is the dimensionality of PS, r k  

is the dimensionality of the transformed CS for the k f h  group and d is the dimensionality pro- 
duced by the spate invariant linear transformation method. This is because the space variant 
linear transformations are designed for a smaller number of classes, for which less dimensionality 
is needed for a comparable probability of error. In this sense i t  is appropriate t o  report that  
from our experiments using the KL expansion method for the seven dimensional TM data,  we 
can reduce the dimensionality to four, using the rule of thumb proposed by Merembeck and 
Turner [ 81. 

3. In the final classification the number of distances, (aposteriori probabilities or the likeli- 
hood functions), which must be calculated are less than if we use the space invariant linear 
transformation method. This is because a t  the final classification step, we need only to calculate 
the distances of the c1;rsses that are members of a group, instead of all available classes. 

Besides, from the class pair distances calculated on PS to find the close classes, we h a \ ( %  a 
more detailed view of the data  and can decide on the next processes b,ised to this inforniatinii. 

All of these advantages have to be paid by doing complex calculations or processing on 1%. 
However all of these processes are basically done 08 line, i.e. they are not done for each 
unclassified point. Also another disadvantage is that  the clean up process is required for o u r  pro- 
posed method in the final classification step. 
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7. Experimental Evaluation of Dimensionality 
Reduction Techniques 

Having developed a theoretical analysis of the four methods of dimensionality reduction by 
linear transformation, as presented in Sec.3., we then performed experiments t o  compare the 
performance of these methods. The comparisons are based on the probability of classification 
errors for the same reduced dimensions for each method. The need to make experimental com- 
parison is due to  the difficulties of establishing the analytical relationship between probability of 
error and dimensionality reduction by linear transformation for general situations. For a very 
restrictive situation, for example, for two multivariate normal classes with equal covariance 
matrices, the MDA method has a direct relationship with the probability of error. As shown in 
Sec.3. this problem leads to  finding the linear transformation for dimensionality reduction by 
using objective functions which do not have a direct relationship with probability of error. 

The best method in the comparisons should have the smallest number of the reduced 
dimensions with a probability of classification error that  still is close to  tha t  of raw data, having 
the original dimensionality. This implies that the probability of classification error for the raw 
da ta  is always the best i.e. the smallest. However, depending of the method used to estimate 
the probability of error, this is not always the case, as shown later in the experimental results. 
Discussions of methods for estimating the probability of error will be presented in this chapter 
as well. 

Also, in this chapter, we will propose and discuss modifications of the methods presented 
previously. The ideas for these modifications came out of the experimental work. They are 
referred to as the First and Second Version of the Weighted MDA method, modifying the ordi- 
nary MDA method, and the KL Transform-MDA Hybrid method, modifying the KL Transform. 
Experiments with these methods will also be performed. 

7.1. Evaluation Method: Probability of Error Classification Estimation 
Basically there are two general methods of probability of error estimation[l]: non 

parametric and parametric methods. In the non parametric method the estimate of the probabil- 
ity of error does not depend on the probability distribution of the classes. The classification is 
performed on data  for which the true classes are known apriori. Then the classification error is 
estimated by counting the misclassified samples. This estimation is also not dependent on the  
classification rule. What is estimated here therefore, is the probability or the rate of 
misclassification which, in practice, may be more useful than estimating the theoretical optimum 
Bayesian probability of error. However the non parametric method always requires training 
samples i.e. a set of known class data for classification. 

In the paranietrir method what is usually estimated is the optimal or Bayesian probability 
of error which is given theoretically by 

(7 .1)  

where P ( w i  12) is the aposteriori probability of class wi and p ( z )  is the mixture density. 

Since the aposteriori probability depends on the class apriori probability and the class condi- 
tional probability density (see Sec.3.) then the optimal probability of error is dependent on these 
parameters. 

An example of the parametric method to estimate the optimal probability of error is(21: 
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where N is the total number of data samples and C is the total number of classes. I t  is shown 
in the cited reference that  this is an unbiased estimator and for two classes its variance is 
always less or equal to that  of the estimator found by the non parametric method. 

Another example is tha t  known aa error/rejection trade off[3] Le. the functional relation 
between the probability of error and the rejection rate for any level of classification threshold t , 
which can be used to  describe the performance of a classification system. This method, discussed 
in Sec.6.3., included a piecewise linear approximation of the error/reject function t o  approxi- 
mate the optimal probability of error. 

The advantage of’ these two parametric methods is they do not require a set  of known sam- 
ples except for the requirement for a set of known samples for estimating the parameters of the 
class conditional densities. Also these two methods estimate the theoretical optimum probability 
of error. However the estimate might not be reliable if the real scattering of the da ta  of each 
class deviates very much from the assumed parametric form of the class probability density. 
Moreover, the error occuring in each class cannot be observed. The non parametric method can 
provide this information. In our experiments the estimate of the optimal probability of error is 
calculated from Eq.(7.2) for the parametric method and is listed with the estimate of the proba- 
bility of misclassification using the non parametric method. 

Now we are going to discuss the method for estimating the probability of classification 
error within the non parametric framework. Suppose we know the parametric form of the class 
conditional density functions but do not know the values of the parameters. We can estimate 
these parameters from the training set. We also require an additional set of known class data to 
estimate the probability of error. It is required that  the set of known class samples used to  esti- 
mate the class parameters, t o  be known as the design samples, be independent of the set of 
known class samples used t o  estimate the probability of error (41, known as test  samples. The 
reason is that  if the design set is used as test set the estimate of probability of error will be 
biased. 

One method for using design samples as test samples is known as the resubstitution 
method[4, 11. The hold out method(4, 11 is an alternative for the resubstitution method. In this 
method we have two exclusive sets of training samples. One set contains the design samples 
and the other contains the test samples. However, this method has some drawbacks in that for 
an insufficient number of training samples, the estimate of the probability of error is very pes- 
simistic or  biased t o  a high probability of error. In addition, this method does not use the train- 
ing samples effectively. 

The  concept of the I1 method(l1 is a compromise between the above methods. In this 
method, the training samples are divided into a test set with a small number of samples, say k 
samples, and a design set with a large number of samples Le. N - k ,  where N / k  is integer and 
k < < N .  The classifier then is trained with the design set an t ted with the test set. Suppose 
the proportion of the test samples classified incorrectly is Be n ,. Then select another k test 
samples and N - k  design samples such that  these test sets are disjoint. We will have N / k  such 
disjoint test sets and for each pair of test and design sets we train the classifier with the design 
set and test with the test set. The resulting estimate of the probability of error is 

. 

1s 

For k = N  /2, the above method becomes the hold out method in both directions, which is also 
called the  cross validation method. For k=1 ,  the above method becomes what is called the 
leave one out method[4]. However since k is small, the .disadvantage of the ll method is tha t  i t  
requires very heavy computation and also the estimate, although it tends to  be unbiased, has 
large variance[l]. 
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When the number of training samples is large the hold out method is reliable[l, 41. We 
will use the hold out  method together with the parametric estimate given by Eq.(7.2) when pos- 
sible in our performance evaluation. In our case i t  is reasonable to  have a large number of sam- 
ples in the design and test sets. T o  estimate how many samples are required in the test set, we 
will use the following formula[5] 

where NT is the number of the test samples, p is the probability of error and E2  is the allow- 
able error of the estimate of p . 

This formula is derived from the variance of a binomial random variable with parameter 
p , where tha t  variance is given by[6] 

and the allowable error E is equal to twice the standard deviation u. 
From Eq.(7.4), since the maximum of t h ( b  numerator is one, then for NT=1000 for exam- 

ple, the allowable error E 2  will be 0.001 whicli is a very sinal1 number. A similar method[7] 
showed tha t  for a class or category probability of error about 0.5, with allowable error E=0.10, 
the minimum number of test samples is 60. Therefore the performance measure will be based 
on the hold out method, by testing with a test set consisting of more than 1000 samples per 
class. We will use more than 1000 samples per class for the design set as well, which guarantees 
that  the estimates of the class parameters are close to  the true values. 

7.2. Training Sample Acquisition 
As discussed in the preceeding section to  compare the performances of different linear 

transformations we need to  have a set of known class samples. As is shown in the two dimen- 
sional histograms in KL 1 and KL 2 space in Fig.7.1 and KL 1 and KL 3 space in Fig.7.2. the 
T M  data  do not show strong multimodality. Three modes are present: the water class, the 
dense tree and tree/shrub classes and a mode representing data from the remaining classes. 
Clustering methods such as ISODATA[8] which try to  find natural groupings or modes will gen- 
erally perform poorly o n ' T M  data. Reasonable results for clustering of MSS da ta  has been 
reported[9] but  the procedure was controlled such tha t  the clustering results are always 
confirmed with other sources of information. I t  is also shown in the above report that  the clus- 
ter centers are almost uniformly distributed in feature space. This also indicates that  there are 
no strong modes to govern the clustering. The use of ground truth in the form of aerial photos 
or ground maps can lead to  choosing an unrepresentative set of training samples because of the 
different intepretations of land use and land cover. There can also be changes in the objects on 
the ground, leading to  large differences between the land cover on the satellite image and oh 
other images taken at different times. Finally, the acquisition of real ground truth can be very 
costly. An interactive clustering for the TM data, to  avoid the above problems, is presented in 
the following section. 

7.2.1. Interactive M L  Clustering 
The interactive maximum likelihood (ML) clustering is a method of clustering where the 

da ta  are classified usiiig a maximum likelihood classifier based on a Gaussian assumption with 
some interventions by the operator in the case of 

1. Finding the training samples of recognizable classes on the satellite image. 
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2. Resolving class conflicts. 
3. Creating classes. 

Those three interventions are done using the high resolution Gould 1P8500 image processor with 
its software support. The first intervention is done in the initial step. In observing the image 
we can nearly always distinguish some of the classes. The principal distinguishing characteris- 
tics are due to the class-distinct reflectances. For example, water has low reflectance in the 
visual spectrum. The distinctions are also due to class-distinct spatial forms, for example, man 
made objects, streets, freeways. Once we can identify those classes on the  image, we can create 
a blotch file using the Gould software by creating a binary map overlaying the image. Using the 
blotch file, we can mask the images to get the values of the pixels over the area of interest indi- 
cated by the blotch. Sets of masked points become the design sets for estimating the class mean 
vectors and covariance matrices. These parameters then will be used in the initial ML 
classification of the assumed Gaussian equally likely classes. 

Before we continue with the discussion of the operator interventions we need to discuss 
how to represent the images such that the process of recognizing the classes from the images is 
made easier. The TM data are seven dimensional images and it is very difficult to  observe those 
seven images simultaneously. To extract as much information as possible from the seven dimen- 
sional da ta  by viewing a smaller dimensional image i.e. with the managable three dimensional 
da ta  we apply the KL expansion (see Sec.3.) to  the original seven dimension image. 

The KL expansion or transformation is based on the eigenvectors of the sample covariance 
matrix of the data, calculated using: 

l N  
Ni=1 

where E = -  zi is the total mean vector of the data. The mean vector, the covariance 

matrix, the correlation coefficient matrix and the eigenvectors and eigenvalues are given in 
Table 7.1, 7.2, 7.3 and 7.4 respectively. From the correlation coefficient matrix of Table 7.4 i t  is 
observed tha t  very high correlations occur among bands 1, 2 and 3 i.e. the visible bands and 
between bands 5 and 7 i.c. the near and middle infra red bands. Therefore, dimensionality 
reduction is feasible bacause of those high correlations. Since we will use only three dimensional 
da ta  then the KL transformation will use only the three eigenvectors corresponding to the first 
three largest eigenvalues. These three eigenvalues carry more than 97 percents of the total vari- 
ance, where the largest eigenvalue of the discarded eigenvectors only has a little more than one 
percent of the variance. This eigenvector selection follows almost exactly the rule of thumb sug- 
gested by Merembeck and Turner(lO1. 

The  T M  image used in this experiment was acquired on Jan. 25, 1983 and its scene 
identification number is 40193-16315. The study area in tha t  scene is the Walnut, Creek 
Watershed east of Austin Texas with a size of 982x1024 pixels. One thing worth noting is that 
the da ta  type in the original image is byte, while the data  after KL transformation are real 
which require four bytes per data sample. Therefore, reducing the dimensionality from seveii to 
three while increasing the number of bytes from one to  four yields an increase in the memory 
requirements by almost twice that  of the original data. T o  acquire an actual reduction, the KL 
transformed data  has t o  be converted to byte as well. The byte type data  represents eight bit 
da ta  with dynamic range from zero to  255, uniform quantization is used in the conversion. 
Each KL transformed sample is scaled by 1.3784 before quantization so that  the minimum and 
the maximum data  value of the first KL transformed da ta  are equal t o  Eero and 255 respec- 
tively. T h e  third KL transformed image needs to  be shifted by 25 in addition t o  the scaling 
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Table 7.1 
Data Mean Vector 

i 77.45 28.63 31.97 41.88 61.89 102.48 28.54 
Band 1 2 3 4 5 6 7 

Table 7.2 
Data Covariance Matrix 

Band 1 2 3 4 5 6 7 
1 79.16 
2 42.95 25.42 
3 62.95 36.46 58.22 
4 34.07 22.60 32.29 75.05 
5 101.32 61.32 101.81 81.09 319.59 
6 4.28 2.95 5.70 3.29 23.57 7.99 
7 66.24 38.91 62.98 36.80 164.22 12.44 98.13 

Table 7.3 
Data Correlation Coefficient Matrix 

Band 1 2 3 4 5 6 7 
1 1. 
2 0.96 1. 
3 0.93 0.95 1. 
4 0.44 0.52 0.49 1. 
5 0.64 0.68 0.75 0.52 1. 

, 6  0.17 0.21 0.26 0.13 0.47 1. 
1 7  0.75 0.78 0.83 0.43 0.93 0.44 1. - 

____ 

Table 7.4 
Eigenvectors and eigenvalues of Data Covariance Matrix 

Eigenvector 1 2 3 4 5 6 7 
.305 0.631 -.219 -.214 0.106 -.567 -.288 
.181 0.328 -.066 -.020 0.064 0.039 0.922 
0.289 0.4 -.148 0.027 0.153 0.804 -.253 
0.221 0.229 0.93 0.152 -.062 -.031 -.049 
0.754 -.518 0.196 -.374 0.147 -.019 0.020 
0.052 -.lo9 -.031 0.574 0.796 -.143 -.001 
0.413 m.052 -.236 0.679 -.549 -.091 -.023 

Eigenvalues 529.48 64.35 52.60 6.76 5.40 3.84 1.13 
I -  % 79.79 9.70 7.93 1.02 0.81 0.58 0.17 
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before quantization t o  maintain a transformed range of zero t o  255. 

It  can be shown[ll] tha t  shifting will not change the classification result of the ML 
classifier for Gaussian classes. Moreover, scaling of each dimension, which amounts to  multiply- 
ing the da ta  veclors by a non singular diagonal matrix also will not change the classification 
result of the ML classifier of Gaussian classes. 

The next operator intervention is to  observe whether there are conflicts among the training 
sets for each class and how to resolve this. Class conflicts occur whenever the training samples 
from two or more classes are highly overlapped in feature space. There are several ways to  
detect this, and one of them is by observing the classification results based on the training sets. 
If the classification result shows a lot of small patches of different classes inside an area classified 
as a class then a class conflict can be assumed t o  occur. For example, after the initial 
classification we observe a lot of small patches of the barren class inside the area classified as 
residential. Another way to  observe the conflict is by manually plotting the position of the class 
mean vectors and their class scattering, measured by their standard deviation, around the mean 
vectors on a two dimensional axis in feature space i.e. KL 1 and KL 2 space and KL 1 and KL 
3 space. A computation method of confirming a conflict is by using the Lissack-Fu distance 
measure[Z] with parameter s =1, 

J ,  (w i  ,wj  =E JP I w i  I 2) -P ( w j  I 2) I (7.6) 

This distance has a direct relationship with prabability of error for a two class problem: 
P " =- 1 [1-J, (Wi ,wj ) 3 

es t  

For multivariate normal classes the distance measure can be estimated by 

(7.7) 

where 

1 

and Nij is the total number of samples from classes wi and w j  . 
It is shown in the cited reference(21 that the estimate given in Eq.(7.8) is unbiased and 

always has  smaller variance than the one found from the non parametric method. The distance 
between classes is considered far if the estimate is close to  one. Since this distance depends on 
the distribution function of both classes then for multivariate normal classes, the changing of 
the classes parameters i.e. the mean vectors and the covariance matrices of either one of the 
classes or of both classes can change the distance. Moving the class mean vector and changing 
the covariance matrix is one way to resolve the conflict. 

Other way to  resolve the conflict is to observe on the Gould screen the two dimensional 
histogram i.e. on KL 1 and KL 2 and/or on KL 1 and KL 3 the samples taken from the classes 
found in conflict. From the observation we may find tha t  there is a high density of points a t  
the boundaries between classes. If this happens then we can assume that  there is another class 
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shown by those dense points and we can create a new class, or subclass, for these points. The 
new class is created by approximating the mean vector by position of the dense points and 
approximating the covariance matrix by the scattering of the dense points. 

In addition to creating new classes because of conflicts, we can also create new classes in 
the regions of the two dimensional histogram of the data tha t  are empty of class definitions but 
which have points scattered in the region. Creating classes in this case means tha t  we assume 
tha t  there is a class in each area but  it was not recognizable in the image. After we have all the 
mean vectors and covariance matrices both of the known and new classes, we again apply ML 
classification. From the result of the classification, we again observe whether there are classes 
still in conflict, whether the created classes are consistently occupy solid area in the classified 
image or whether the created classes are consistent with the ground t ruth data. In the next step 
we will discuss how to enhance the classified image such that the classes we are interested in are 
easier t o  distinguish. 

After each classification we will have a map with each pixel labelled with number associ- 
ated with its assigned class. The numbering will be from one to  the number of classes. For 
example, if we have 22 classes then the numbering will be from class 1 to class 22. One way to 
enhance the classified image is by creating a psuedocolor display of the classified image using a 
program available in the Could system. Some classes may have very little difference in their 
colors or low color contrasts due to the method used for class numbering. If we are interested in 
a close examination of a few class, we can enhance the classified image by changing the number 
assignments of the classes of interest. than the rest of the class numbers. For example, say we 
are interested in the residential class which is assigned the number five. Suppose we have 22 
classes, then we change each pixel assigned to five to  a large number larger than 22, say 50. 
Then we can recreate the pseudocolor display of the classified image. Because the number 50 is 
much larger than the rest of the class labels, pixels from this will be very distinct, and thus, 
easier to  observe. A class is assumed to  be properly defined whenever i t  has solid large patches 
in the classified image. Solid means that not too many pixels from other classes occupy large, 
homogeneous regions. The classification of the large patches can also be confirmed by use of the 
ground truth data. 

This enhancement of the classified image by changing the class labels is very helpful in 
determining the class descriptions, especially when we create new classes. At  times i t  is difficult 
to recognize a class directly from the image. However after samples from this class have been 
assigned t o  a specific number and enhanced, the spatial distribution of assigned pixels can give 
more information about the description of the class. Comparison with aerial photos and maps is 
also made easier because of the high color contrast of the enhanced image. 

7.2.2. Result of the Interactive ML Clustering 
As discussed in the preceeding section, the first step in the clustering process is to  find the 

locations of the pixels of recognizable classes. For this process and subsequently for the rest uf 
the  process we will use the three dimensional KL transformed data or image. The general obser- 
vation of the KL 1 image shows that  some structures are clearly shown. They are streets and/or 
highways, blocks of resjden tjal areas, airport runways, rivers and lakes and some agricultural 
fields. T h e  observation also shows some distinct spectral characteristics of different classes. For 
example, water is dark, barren is the most white, dense tree is dark almost like water but 
without a regular structure, tree/shrub is dark grey, agriculture classes are dark grey to grey 
and residential or man made classes are light grey. Some classes are difficult to identify. For 
example, residential areas have almost the same intensity as their surrounding areas. 

General observation of the KL 2 image shows some distinct intensities as well. Water is 
white/grey, man made classes such as highways, residential, and airport runways are 
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white/grey, almost the same as the intensity of water. Barren is still the most white, dense tree 
is grey and shrub/grass i.e. low height vegetation is black. Also in this KL 2 image the residen- 
tial structures are clearly distinct from the surrounding vegetation. Observation of the KL 3 
image shows tha t  the most significant intensities come from man made vegetation fields. They 
are white regular/rectangular patches or grey and dark patches. Water is black and the rest of 
the image is grey with unclear structures. 

In the initial step we were able t o  recognize fourteen classes by observing the three KL 
images in a false color display on the Gould system. The aerial photos and USGS maps were 
also used in this step. Those fourteen classes are water, residential, transportation/young 
residential, concrete, dense tree, tree/shrub, savannah, crop 1, crop 2, crop 3, grass 1, grass 2, 
grass 3 and barren. Then ML classification and operator interventions are applied as discussed 
previously. The six classes which are agricultural and grass are very distinct such that  they do 
not need any further adjustment until the end of the clustering process. This is also true for 
classes dense tree and tree/shrub. 

The water class must be modified as we observe after the initial classification that  some 
water is classified as either dense tree or tree/shrub. This is resolved by defining a shallow 
water class. Changes must also be made in the Barren class. I t  is observed that  there are too 
many barren assignments in the residential and water classes. One of the reasons for this is 
tha t  the variances of barren are very large since its training samples occupy a rather large space 
in KL space but  with very low density. T o  resolve the misclassifications, we reduce the vari- 
ances of barren by almost a half and modifiy the covariances such that  the cross correlation 
coefficients are constant. 

We also create two more classes close to the barren class in the KL transformed feature 
space. The  region where we put these new classes is empty of class definitions but there is a 
large but  low density da ta  scattering of samples in the two dimensional scatter diagrams. We 
also bbserve tha t  the concrete class occupies some irregular regions which is not desirable, so we 
create another class from these irregular regions. The training samples for the concrete class 
were found from the airport runways. After another classification and comparison with the 
maps, the newly created class appears to be the gravel class. In the interactive process, other 
man made classes are also defined. 

The most difficult class conflicts usually occurs among man made classes, barren classes 
and among classes such as savannah and grass/shrub classes, which usually are not too homo- 
geneous. Savannah is the transition from tree/shrub to  grass and grass/shrub is the transition 
from tree/shrub to grass. Man made objects are often transitional also, because they are com- 
monlly occupied by several different classes. For example, the transportation class is frequently a 
combination of trees, streets, soil and grass. The density of the surrounding vegetation can also 
indicate man made classes. For example[l2], single family and older residential usually have a 
canopy of dense trees which allow them to be distinguished from multi family housing/young 
residential because the latter has a lower density of trees or vegetation. In our case, the young 
residential class is found after observing the two dimensional histograms of pixels classified as 
transportation, residential and shopping center. The histograms show tha t  there is a region with 
a rather high density of points in the boundary between residential and shopping center. We 
then create a class bared on the position and scattering of these dense points and after subse- 
quent classification and comparison with the aerial photos and maps it appears that  these points 
come from young residential. 

After eleven manual iterations, or eleven class adjustments and classifications, we esta- 
blished t h a t  the clustering was satisfactory. We defined twenty two classes occupying a percen- 
tage of the  study area as given in Table 7.5. The percentage area of a class is the number of 
pixels classified as that  class divided by total number of pixels. The eleven manual iterations 
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Table 7.5 
Result of Interactive M.L. Clustering 

Class Class Number Area 
Number Name of pixels % 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

Water l(deep) 
Water 2(shallow) 
Residential l(o1d) 
Residential 2(young) 
Shop/Comm. 1 
Shop/Comm. 2 
Concrete/Ind. 
Transport. 1 
Transport. 2 
Gravel 1 
Gravel 2 
Barren 
Dense Tree 
Tree/Shrub 
Savannah 
Grass/Shrub 
Grass 2( irrig.) 
Grass 1 
Grass 3(dry) 
Crop 3 
Crop 1 

22 CroD 2 

7891 
15837 

38691 
13841 
8017 
3505 

34215 
26139 

4466 
10932 
6160 

127267 
201136 
171661 
45562 
31615 
38895 

7496 
45498 
12760 
54119 

9 w m  

0.78 
1.57 
9.93 

1.38 
0.80 
0.35 
3.40 
2.60 
0.44 
1.09 
0.61 

12.66 
20.00 
17.07 
5.53 
3.14 
3.87 
0.75 
4.52 
1.27 
5.38 

3.85 
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required was rather large because of the lack of experience of the author in image intepretation, 
especially in the early stages. In the following section an attempt to  quantify the quality of the 
interactive ML clustering process in terms of probability of error is presented. 

7.2.3. Evaluation of the Interactive ML Clustering 
We want to  quantify the quality of the interactive ML clustering in terms of probability of 

error. T o  do this we need to  apply the classification to a subset of the data. The subset of the 
da ta  have t o  be representative training samples. The representative training samples are 
acquired by p"$ m selection[l3, 71. In our case the random selection is done using a uniformly 
distributed 0,l random number generator. We first define how many training samples are 
required for a cl s. Then we find the ratio of the number of the required training samples to  
the number of pixels of that  class. For example, for water 1 class we require 3000 training sam- 
ples. From Table 7.5., the number of pixels available from water 1 is 7891. The ratio of the 
required training samples to  the number of available samples is 0.38018. The classified image is 
scanned, and when a pixel of water 1 class is encountered a random number is generated. If the 
number is less than or equal to the ratio i.e. less than or equal to  0.38018 then tha t  pixel will be 
included in the training sei,. We will get close to 3000 training samples and we will select the 
first 3000 of them. If we get less than 3000 samples than we can increase the ratio slightly arid 
do the sampling again. In our experiment we require that  each class be represented by 3000 
training samples. 

Basically our interactive ML clustering end result is produced by a ML classification. Hence 
we will apply ML classification t o  the training samples as well. Since the training samples pro- 
vide a good representation of each class, the resulting probability of error of the ML 
classification of the training samples will give a good indication of the probability of error of the 
ML classification of the full image. In the ML classification of the training samples, following the 
discussion in Sec.7.2., the design sets and the test sets of each class will be different. One more 
condition to be met by the training samples, the training samples must be transformed by the 
KL transformation t o  be come a three dimensional feature space, as described in Sec.7.2.1. 

The classification of the training samples discussed in the preceeding paragraph is also a 
way to test the sensitivity of the class assignments of the data to  the changing of the decision 
boundaries. In the Gaussian ML classifier, the decision boundaries are dependent on the class 
parameters. By using the new design set to estimate the class parameters, we expect that  these 
new parameter estimates will be different, although not greatly different, than those used in the 
last classifiriiliun of the interactive ML clustering. If the slight changing of the decision bouri- 
daries produces large probability of error estimates, then the number of points per hypervolurne 
or the density of points in the regions close to  the decision boundaries is high, which subse- 
quently indicates that  the probability of error in the last classification of the interactive ML 
clustering is high as well. This is because the probability of error mainly depends on the density 
of points in the region close to  the desicion boundaries. Therefore the classification of the train- 
ing samples discussed in the preceeding paragraph, allows us to  quantify the probability of error 
of the last classification of the interactive ML clustering method. 

The  design sets for each class will consist of 1200 samples and the test sets of each class 
will consist of 1800 samples. The classification will be done twice, so we create for each class a 
second design set consisting of 1200 samples, different from the design set of the first 
classification. The test, set consists of the 1800 remaining samples. 

The  result of the ML classification of the training samples is shown in Table 7.6. The first 
and the second columns of Table 7.6 are the results of the ML classifications, and the third 
column is the average of the first and the second columns. The figures in the first up to  the 
22nd row of the first and the second columns are the estimates of the class conditional 
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-- 
Table 7.6. 

Estimate of the Probability of Error 
of the Interactive M.L. Clustering 

B e  I"; (%I 
Class First Classification Second Classification Average 

1 0.06 0.33 0.20 
2 11.11 11.5 11.31 
3 10.94 11.83 11.39 
4 12.06 12.72 ' 12.39 
5 11.89 13.44 12.67 
6 5.28 3.72 4.5 
7 3.89 3.94 3.92 
8 20.44 19.11 19.78 
9 14.17 13.83 14.00 
10 13.89 14.33 14.11 
11 10.44 12.56 11.50 
12 6.5 6.78 6.64 
13 4.06 3.00 3.53 
14 14.45 14.17 14.31 
15 18.5 16.61 17.56 
16 6.83 6.22 6.53 
17 4.72 5.39 5.06 
18 6.78 5.94 6.36 
19 1.61 2.17 1.89 
20 0.61 0.83 0.72 
21 0.67 1.17 0.92 
22 10.17 8.17 9.17 

k (7%) 8.59 8.54 8.57 

B, (%) 18.78 18.89 18.84 

-- 

pew (?a 11.17 10.63 10.90 
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where Nci is the number of the correctly classified pixels from class wi and NTi is the number 
of samples in the test set for class w i .  The 23” row of the first and the second columns are the 
averages of the class conditional probability of error, which are calculated as follows, 

(7.10) 

where G is the number of classes. The 24fh row of the first and the second columns are the 
weighted averages of the class conditional probability of error, which is calculated as follows, 

(7.11) 

where P ( w i  ) is the estimate of the class apriori probability found from the percentage area 

classified as class wi in the interactive ML clustering which is shown in Table 7.5. And the last 
row of the first and second columns are the estimates of the optimal or Bayesian probability of 
error calculated from Eq(7.2). 

7.2.4. Diecussioii of the Interactive ML Cluster ing Results 
Before we proceed further in the discussion, we want to  emphasize what is happening in 

one of the operator interventions i.e. in the class creation or class synthesis. I t  may not be so 
clear in passing what is actually happening in that  process. If the operator believes that  there is 
a class in a region of the three dimensional space spanned by the three KL axes, then the opera- 
tor may create a class by approximating the class mean vector from the position of the approxi- 
mated center of that  class and approximating the covariance matrix by the scattering of the 
da ta  of the synthesized class. See section 7.2.2. for the reasons why the operator may believe 
tha t  an additional class should be present in the three dimensional space. These class parameter 
approximations clearly are far from accurate. However after classification is applied using all the 
class parameters including the class parameters of the synthesized classes, we can make some 
observations of the spatial distribution of the displayed classified image. By using the class 
enhancement technique discussed in section 7.2.1. we can observe in more detail the spatial dis- 
tribution of classes in the classified image. For the Synthesized classes, we can select o u t  of all 
the pixels assigned to the class those which constitute the most representative training saniplcs 
for each class. W-e only select as training samples the pixels which come from spatially solid 
blocks. We will pick the training samples from several different spatially solid blocks of the 
classified image for each synthesized class. Therefore, after the training sample acquisitions for 
the synthesized classes, the class parameters are estimated as for any other class i.e. from the 
training samples of thc associated class. A summary of the class creation or class synthesis pro- 
cess is as follows. Initially the class parameters are approximated roughly, then classification is 
performed. The classified image is then observed and the training samples for the synthesized 
classes are acquired and better estimates of the  class parameters are computed from the 
acquired training saniples. A synthesized class is not necessarily maintained after initial 
classification. I t  might be discarded if the observation of the classified image shows that the syn- 
thesized class does not appear to have large solid blocks in the classified image. 

Although we cannot include the end result of the interactive ML clustering in the desserta- 
tion because of the restriction of color photographs, the results are  encouraging. Most of the 
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image is occupied by blocks of classes rather than by small patches. However, some inconsisten- 
cies are seen in man made features such as shopping centers, residential or transportation 
categories. 

From Table 7.6. we have the information needed to  asses the quality of the interactive ML 
clustering. The first and second classifications, shown in the first and second columns of the 
Table 7.6., show that  those two classifications have similar results. The largest difference in the 
estimated class conditional probability of error P,  I wi is for class 22 which is about 2.0%. Oth- 
erwise, the two estimates are very consistent. From this consistency we can draw some conclu- 
sions. First, the samples which are assigned as design sets in both classifications clearly are 
representative of the classes. Remember that these two design sets, one for each classification, 
are totally different sets. The fact tha t  they yield a very consistent results indicates tha t  they 
are representative of the classes. The second conclusion is tha t  since the error estimates from 
the two sets are similar, the entire set of training samples provide a good representation of the 
classes. I t  would be very difficult to  justify this conclusion if the results of these two 
classifications were totally different. While we performed only two classifications, the large 
number of samples in the design sets for each class, which is 1200 samples/class, and in the test 
sets of each class, which is 1800 siimples/class, provide strong support for the conclusion. 

We will use the average of the results of the first and the second classifications i.e. the  
third column in Table 7.6. as the basis for our ensuing discussion. We next want to  consider 
the last three rows, consisting the average of the class conditional probability of error from 
Eq.(7.10), the weighted average of the class conditional probability of error from Eq.(7.11) and 
the estimate of the optimal Bayesian probability of error from Eq.(7.2). First we need to  remind 
ourselves tha t  the optimal Bayesian probability of error and certainly its estimate depend on the 
applied classification rule. This rule is the minimum probability of error classifier or the max- 
imum aposteriori decision rule, as described in Sec.3.1. One significant problem tha t  arises here 
is tha t  in the classification we are applying, we assume that  all the classes are equally likely. We 
know tha t  the aposteriori probability is dependent on the apriori probability and that  the pro- 
bability of error or more precisely its estimate calculated using an equally likely assumption will 
be different than if the correct apriori probabilities were applied. Second, the optimal Bayesian 
probability of error or its estimate certainly depends on the accuracy of the class conditional 
probability density functions in representing the distribution of each class. In terms of the T M  
data,  the deviation from the Gaussian class distribution assumption is quite possible especially 
in the hypervolumes at the tails of the distribution. It is expected that the density of da ta  at 
the tail fall to zero abruptly rather than following the asymptotic curve. Clearly this will yield a 
Bayesian probability of error estimate that  is larger than i t  should be. Therefore the estimate of 
the optimum Bayesian prol)ability of error shown in the last rows of the Table 7.6. will not, be 
used as the  quality measure. This leaves the  unweighted and weighted averages of the class 
conditional probability of error for consideration. Recall tha t  these two are nonparametric esti- 
mates, as described in Sec.7.1. We will use the weighted average as our quality measure. The 
weights are the class proportions or apriori probabilities. The principal reason for selecting the 
weighted average as the quality measure is that the error occuring in classes with low probabil- 
ity should have a small effect on the overall probability of error, and just the opposite, classes 
with high probability should have a strong effect on the overall probability of error. 

In terms of 13ayesian classification procedure, the equally likely class assumption in the non 
equally likely class situation (see Sec.3.) will yield a probability of error that  is not minimum. 
However, in ternis of non parametric probability of error estimation, the classification rule 
applied does not affect the estimate. What is important is the percentage of class wi samples 
tha t  are correctly or incorrectly classified. We can make this observation because the 
classification of each of the points to be classified is known before hand. Therefore although the 
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classification rule applied is not necessarily optimum, but the resulting probability of error esti- 
mate is the correct one for that  particular classification rule. In this regard therefore, the 
overall quality of' the interactive ML clustering is characterized by the 10.9% probability of 
misclassification (see Table 7.6. row number 24 of the third column). There are two classes 
which have class conditional probaility of error larger than 15%. These are classes 8 and 15. In 
terms of the class proportions, from Table 7.5., the more important class is class 15 (savannah) 
because it occupies about 17% of the study area. Twelve classes have class conditional probabil- 
ity of error below 10%. 

Grouping of classes may be more desirable in intepreting the classification result. For 
example, there may be little concern if the shallow water and deep water classes are mixed up 
by the classifier. On the other hand there might be more concern if the classification yielded 
many errors between water classes and man made feature classes. For this reason then we will 
group our original 22 classes into 10 new classes where the new classes and their class members 
are shown in Table 7.7. This grouping is similar to  level I of the USGS land use/land cover 
classification system [5] and similar to  the grouping done in Algazi[ 121. 

Similar to  Table 7.6, Table 7.8 shows the class conditional probability of errors for the new 
classes. The weighted average of the class conditional probability of error is also shown. Similar 
t o  Table 7.6 as well, the first and second columns of Table 7.8 show the probabilities of error of 
the first and second classifications respectively and the third column shows the average of the 
first and the second columns. 

The class conditional probability of error is calculated by assuming tha t  an error has 
occurred if a pixels of a new class is assigned t o  another class. The difference between this 
result and that  is given in Table 7.6 Le., for the old classes, is that  the errors among classes 
which are members of the new class are not accounted for. The weighted average of the class 
conditional probability of error, shown in the last row of the third column of Table 7.8, is 
9.22%, an improvement of about 1.5% over that for the original classes. 

To conclude the discussion of the interactive ML clustering method we note tha t  there are 
two important characteristics of this method, one a disadvantage and the other one an advan- 
tage. The disadvantage is that  this method depends heavily on the interactive image processing 
system and its associated software. This system is needed not only as the tool to observe the 
intermediate classification result but  also to perform some of the processing. This processing 
includes the blotching process, the pseudocoloring process to  enhance the observation of the 
result of the classification process and many others which are needed in the operator interven- 
tions while applying this interac1,ive ML clustering. On the other hand since the classification 
rule used in this method is basically a supervised classification rule i.e. the Gaussian maximum 
likelihood classifier. 13y applying that classification rule to  the training samples which are 
representative of the i,otal data we can quantitatively assess the quality of the clustering pro- 
cess. The quantitative measure is the probability of classification error shown in Table 7.6 or 
Table 7.8. 

7.3. Linear Transformation Experiments 
In the following subsections, we present the procedure of the experiments, implementations 

of each linear transformation and discussions of the results of the experimental evaluations and 
comparisons of the linear transformation methods for dimensionality reduction. The training 
samples used in the class parameter estimations and in the lion parametric probability of error 
estimations in the experiments are the training samples which have been used t o  measure the 
quality of the interactive ML clustering method, as discussed in Sec.7.2. 
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Table 7.7. 
Class Grouping 

Class Class Class Area 
Number Name Members % 

1 Water Water 1 2.35 

2 Residential Residential 1 13.78 

3 Comm/Ind./Transp. Shop/Comm.l 8.53 

Water 2 

Residential 2 

Shop/Comm.2 
Concrete/Ind. 
Transport. 1 
Transport.2 

Gravel 2 
Barren 

- 

4 Barren/Mining Gravel 1 2.14 

5 Dense Tree Dense Tree 12.66 

7 Savannah Savannah 17.07 
6 Tree/Shrub Tree/Shrub 20.00 

8 Grass/Shrub Grass/Shrub 5.53 
9 Grass Field Grass 2 7.76 

Grass 1 
Grass 3 

10 Crop/Pasture Crop 3 11.17 
Crop 1 
Crop 2 

Table 7.8. 
Estimate of the Probability of Error 

after class grouping shown in Table 7.7. 
B e  I w i  (%I 

c1 ass First Classification Second Classification Average 
1 0.53 0.36 0.45 
2 10.06 10.81 10.44 

4 6.20 6.80 6.50 
5 4.06 3.00 3.53 
6 14.44 14.17 14.31 
7 18.50 16.61 17.56 
8 6.83 6.22 6.53 
9 1.52 1.85 1.69 
10 2.15 1.85 2.00 

B e  (%) 7.18 6.91 7.05 
Pew (%I 9.47 8.97 9.22 

3 7.53 7.42 7.48 
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7.3.1. Procedure 
In this section we will discuss the procedure which will be followed in the experiments to 

compare several linear transformation methods for dimensionality reduction. Some general 
observations will be made about the training samples. These samples represent the T M  image 
of some area on the ground. From the discussion in Sec.72, i t  has been shown tha t  these sam- 
ples are good representations of the TM image of tha t  area i.e. by making a random selection of 
the training samples From the overall image. Therefore the results of the experiments can be 
assumed t o  represent the results of experiments applied to the total image. The results of these 
experiments not only will show some differences and similarities among several linear transfor- 
mation methods but also will indicate how a typical T M  image behaves under these linear 
transformations. What, we mean by behawiour is the trend of' the probability of error for a cer- 
tain linear transformation for a certain dimensionality. 

Now the question is how typical is our image or more precisely how typical is the area con- 
tained in our image. One way to measure this is by observing what land cover categories are 
represented in the image. Do these classes represent a broad enough range classes such tha t  we 
can say tha t  it is a typical image? For this let us go back to  Table 7.5. which shows the list of 
classes contained in the image. O u t  of the 22 classes, there are man made features, forests i.e. 
dense tree and tree/shrub, crops,grass fields etc, which shows tha t  not only the number of class 
is rather large but  the range of the classes is large as well. In fact if we compare the list of the 
classes with level I of the USGS Land Cover/Land Use Clarsification System(51 except for the 
snow category, all the categories in that classification system are represented in our image. 
Therefore we can say tha t  our image is a typical T M  image and thus our experimental results 
can be said t o  represent the behawiour of the TM images for certain linear transformation and 
for certain dimensionality. 

Now we will discuss the procedure followed in the experiments: 
1. Training sample preprocessing: 

The experiments will l e  applied only to  the six reflective bands of the TM data  i.e. we will not 
use the thermal band (band 6). Based on the premise that  the raw data, i.e. the six dimensional 
data, will contain the most inforniation then we would like to  force the class assignment of each 
training sample to be found from the six dimensional data. Therefore we apply ML classification 
to  all the training samples i.e. the 3000 samples/class used in Sec.6.2, in the six dimensional 
space or raw data. Tlie class assigned in this classification to each sample is assumed to be the 
true class. From this step we select 2500 samples/class as the training samples for the subse- 
quent experiment:;. 

2. The  Linear Transformations: 
The linear tranformations which will be evaluated in the experiments are (see Sec.3.): 
a. KL Transform Method. 
b. MDA Method. 
c. Weighted MDA (First Version) Method. 
d. Weighted MDA (Second Version) Method. 
e. TM-Tasseled Cap Linear Tranformation Method. 
f. SVD Linear Transformation Method. 

g. Space Variant Linear Transformation Method. 
h. KL Transform-MDA Hybrid Metod. 

Detailed discussions about the implementation of those transforms will be presented in 
subsection 7.3.2. For each method, except for method g., the dimensionality of the transformed 
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data  will be reduced and the feature selection, except for the Tassel Cap Method, will be made 
using the order of the eigenvalues or the singular values. 

The classification rule which will be used is the maximum likelihood classifier where the class 
assumptions are Gaussian. The classification rule is as follows: 

3. Classification Rule: 

Assign 2: t o  class wi iff, 

gi (z)>gj (a )  i#.i (7.12) 

where 

(7.13) 

where fz1, is the mean vector of class w, and C, is the covariance matrix of class w, . 
The right hand side of Eq.(7.13) is the log version of the Gaussian likelihood function 

where the class apriori probabilities are assumed equal. It was shown experimentally by Merem- 
beck and Turner[lO] that  this classification rule gave the best results among other classification 
rules applied to  ground images. / 

4. Probability of Error Estimation: 
The resulting probability of error estimates will be used to compare the linear transformations. 
The estimates will be computed using the hold out method, discussed in Sec.7.l. Out  of the 
2500 samples/class, 1000 samples/class will be assigned as the design samples or design set and 
the 1500 samples/class left will be used as the test set. The design set will be used t o  train the 
classifier or more preciselly in our case to estimate the class mean vectors and covariance 
matrices. The test samples will be used to  estimate the probability of error by counting the 
number of pixels c1;zssified incorrectly. The large number of design samples, i.e. 1000 
samples/class and test samples, i.e. 1500 gamples/class will guarantee that  the resulting proba- 
bility of error estimates are reliable. 

In the experiments, the number of classes is 22, where the class list is shown in Table 7.5. 
But  the probability of error estimates which will be considered are those of the grouped classes 
shown in Table 7.7. In the grouped case, the probability of error among classes in the same 
group will not be accounted for, and therefore the probability of error estimate will be lower 
compared t o  that of the 22 class case. However the general trends in both cases are similar for 
different transformations and dimensionalities. These probability of error estimates are shown in 
Tables 7.18. to  7.24, and example of an error matrix for the 10 classes is shown in Table 7.25. 

7.3.2. Implementations 
The theoretical discussions about the linear transformation methods was presented 

thoroughly in Sec.3 and Sec.5. In this section we will discuss some aspects of the implemerita- 
tions of these transformations. All of the implementations are based on the theoretical discus- 
sions in previous chapters, however some modifications have been implemented, which will he 
part  of our discussions in this subsection. 
1. The KL Transform Method: 

The  implemcmtation of the KL transform method will follow closely the supporting theory. 
The covariance matrix of the data will be estimated from Eq.(7.5). The data  here are the design 
set i.e. the  1000 samples/class, and the test set i.e. the 1500 samples/class. The eigenvectors 
and eigenvalues of the covariance matrix are shown in Table 7.9. and the probability of error 
estimates are shown in Table 7.18. Also an example of the error matrix for the 10 grouped 
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classes is shown in Talde 7.25. 
2. The MDA Method: 

There are two different MDA methods discussed in Sec.3. These involve two different 
eigen equations, as discussed in Sec.3.5. The first of these is 

S A  &= aj SW (7.14) 

and the second is 

(7.15) 

We want to  show that  the transformations resulting from each version will give exactly the 
same classification results if we are using the Gaussian ML classifier. 

It can be shown easily that,  

(7.16) 

We know from Eq.(7.15), since the associated matrix is symmetric, tha t  

(7.17) 

are orthonormal. Substituting & from Eq.(7.16) into Eq.(7.15) and using 

a j T S A & ' = O  ; i#.'j (7.18) 

pj T pj =sjj 

or the set of 
Eq.(7.17) will yield 

(7.19) 

which shows that  the eigenvectors, 4; , will also diagonalize both matrices SA and Sw . 
Although both sets of eigenvectors a and hi are closely related as shown by Eq.(7.16), 

they are different in the sense that they are solutions of two different eigen equations. Usually 
the eigenvectors are normalized, therefore for the solution of Eq.(7.14), 

I laj I I=ejTaj=l (7.20) 

and also for the solution of Eq.(7.15), 
T a  I I &  I I =& & = l  

These two normalized eigenvectors, using Eq.(7.16), will have relationship, 

(7.21) 

=Diag ( rj-'/') SW ' / ' a .  --I (7.22) 

where the diagonal matrix Diag ( rj-'/') is a scaling matrix such that  both g, and & are nor- 
malized or satisfy Eq.(7.20) and (7.21) simultaneously while also satisfying Eq.(7.16). The diago- 
nal matrix Diag ( ri -'/') is certainly non singular. 

Let us define the D X d  matrices 

(7.23) 
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and 

(7.24) 

where the eigenvectors 

yield, 

and 4. are associated with the d largest eigenvalues, a,. 
Suppose the D X 1 data  vector which will be tranformed is g , and the transformations 

(7.25) T y = A  g 

and 

(7.26) ^ T  P = A  H 

Substituting Ecp(7.20) into Eq.(7.24) yields, 

where 

(7.27) 

(7.28) 

where the matrix P is defined as follows, 

P =Diag ( t i  - ' I2 )  sw ' I 2  

Matrix Sw ' I2 ,  as discussed in Sec.3., is non singular and the matrix Diag (r ,  - ' I 2 )  is also non 
singular, thereforts the matrix P is also non singular. 

Now we will apply the ML gaussian classifier to the D X 1  vector z i.e. by substituting vec- 
tor of Eq.(7.28) into Eq.(7.13), 

I 13 gj (1) =-- [ (l-mzj ) c,-' ( Z - B z ;  +log c,; 1 T 

2 
T -1 

( x -mj ) 2 

Therefore if 

Si (4) =maxi g j  (4) 

then from Eq.(7.29), 

gi ( ~ ) = m a x j g j  (z) 

(7.29) 

as well. 
Therefore classification of y of Eq.(7.25) and p of Eq.(7.26) using the Gaussian ML 

classifier will give exactly the same results. Hence in our experiment with the MDA method we 
will implement the solution of the eigen equation of Eq.(7.14) only. 

The  matrices SA and Sw are created under the assumption tha t  the class apriori probabil- 
ities P (w;  ) are equal. The eigenvectors and eigenvalues of the MDA method are shown in 
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Table 7.10. and the probability of error estimates are shown in Table 7.19. 
3. The Weighted MDA Method: I 

The matrices SA and Sw in Eq.(7.14) can be modified by varying the weights as follows: 
K T 

. .  
i =1 

and 
K 

i = l  
s,=c wi ci 

(7.30) 

(7.31) 

In the following, two versions of the weights Wi are implemented. 

3.a. First Version: 
In terms of the data  scattering, as shown in the two-dimensional histograms in Fig.7.1. and 

7.2., there is no clear multimodality shown. On the other hand we want to give high weights to 
classes with high apriori probability tha t  are also close to their adjacent classes. Because there 
is no clear multimodality in the data  we can assume therefore tha t  classes with high apriori pro- 
bability reside in the space close t o  the total mean vector. Also, we can expect that  those classes 
are close together. Bared on this idea, we can expect that  classes which are far away from the 
total mean vector will have low apriori probability and will be far away from their adjacent 
classes. For the latter, the density of the data appears continuously decreases away from the 
total mean vector, this means that  the number of classes per hypervolume or the class density is 
also decreasing as we move farther from the total metrn vector. 

Based on this idea we want to have weights which depend on the distance of the class 
mean vectors t o  the total niean vector. The distance which will be used is the Mahalonobis dis- 
tance i.e. 

T 
Di = (mi -9) r1 (mi -m) (7.32) 

where Di is the Mahalonobis distance of the mean vector of class wi , mi, to  the total mean vec- 
tor, m , and C is the total covariance matrix of the six dimensional data. 

The weights Wi will be chosen as follows, 

( 7.33 ) 

where these weights will be substituted into Eq.(7.30) and (7.31) to  define the SA and Sw 
matrices. The calculated weights Wi of Eq.(7.33) are shown in Table 7.11., and the eigenvec- 
tors and eigenvalues of this method are shown in Table 7.12 and the probability of error esti- 
mates are shown in Table 7.20. 
3.b. Second Version: 

As discussed in 3.a. above, the weights should represent two characteristics, the class 
apriori and the closeness of a class to its adjacent classes. Thus, the weights in this version will 
be defined as follows, 

(7.34) 
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where P'(wi ) is the apriori probability of class wi and tci is the closeness measure of class wi 

toward its adjacent classes. 

Assuming that we know the class apriori probabilities, P (wi ) , then the class closeness 

measure ni will be defined as follows. We calculate the class pair Mahalonobis distance 

d..= 'I (mi-mj ) Cij -1 (mi-mj ) (7.35) 

1 
2 

where mi is the class mean vector of class wi and Cij =- (Ci +C, ) where Ci is the covari- 

ance matrix of class w ,  in the six dimensional data. For each class we find the two smallest dij 
and sum them as follows, e.g. for class wi , 

(7.36) 

where dij and d,k are the two smallest distances of the two adjacent classes to class w i .  Next 
among all the d,,,k we will select the smallest as a normalizing factor as follows, 

c =mini di, ik 

For our data,  c==7.70124 and is associated with class 10, 
closeness measure tc, is defined as: 

c -  7.70124 
tci =-- 

di, jk di, jk 

(7.37) 

the gravel 1 class. The value of the 

(7.38) 

where tcI0 for class 10 will be equal t o  one. Substituting ni into Eq.(7.34) produces the weights 

The significant difference between these 
weights and the ones of the first version is that these weights have larger dynamic range. The 
eigenvectors and eigenvalues of this second version are shown in Table 7.13 and the probability 
of error estimates are shown in Table 7.21. 
4. TM-Tasseled Cap Linear Transformation: 

error estimates are shown in Table 7.22 
5: The SVD-Linear 'I'ransformation: 

The eigenvectors and singular values of the SVD-Linear Transformation method are shown 
in Table 7.15. and the probability of error estimates are shown in Table 7.23. 
6. The Space Variant Linear Transformation Method: 

The implementation for the experiment for this method differs from what is discussed in 
Sec.6. In this experiment we are more interested in finding the best three dimensional spaces 
through the space variant linear transformation method. In the original idea, discussed in Scr.6, 
this method combines the classification procedure with the linear transformation to  achieve a 
simpler classification process and better probability of error performance. This is achieved by 
performing the first classification in a rather simple space i.e. in the preliminary space (PS) 
which is the first two KL axes. In this step there are two possible outcomes, either making the 
final decision if the probability of error encountered is tolerable or going t o  the next feature i.e 
the third axis otherwise. The third axis is selected on a pixel-by-pixel basis, dependent on the 
class assignment of the classification in the PS. For each assigned class, the next feature will be 
the best linear combination of the last four KL axes, called the complementary space (CS). This 
classification strategy can also be called the sequential method. 

w; . 
These weights, Wi, are shown in Table 7.12. 

The transformation vectors for this method are shown in Table 7.14. and the probability of 
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In our experiment we do not want to implement this sequential strategy, therefore we will 
not make any final class decisions on the PS, i.e. the threshold t =O as described in Sec.6, but  
we will always go to  the next feature which is dependent on the class assignment of each pixel 
on PS. 

The selection for the next axis is slightly different than what is discussed in Sec.6. a s  well. 
We will not use the original MDA method in the CS but a modified form of it. The  
modification of the MDA method is to use only the among scatter matrix, SAi, of the associated 
class w, i.e. the class assigned to the pixel on PS. The associated within scatter matrix Sw, will 
not be used because in the complementary space (CS), the class covariance matrices are so 
different that  the average of them which becomes the within scatter matrix, Sw, , to  represent 
the within class scattering of data  in each class member of the group (see discussion of the 
group of close classes in Sec.6. or the discussion in next paragraph) may not be valid. Therefore 
we just use the class positions represented by the class mean vectors and we only have to solve 
the eigen equation of the among scatter matrices, SAi . 

The selection of the close classes with respect to  a particular class is also different than 
what is discussed in Sec.6. Here, since we know the class assignment on PS from the result of 
the classification on two dimensional KL transform, for each class we can observe the other 
classes whose data  are classified as that  particular class. We will consider a class to be close to a 
particular class il’ at least one point of that  class is classified as that  particular class in PS. 
From this we can find the grouping of the close classes. This idea of grouping will guarantee 
tha t  the error occuring in the final classification will never be caused by the error in selecting 
the close classes, since in the final classification the only classes considered in this step are the 
ones tha t  arc’ nicmbera of the close classes group. These groups are shown in Table 7.16.a. up 
t o  7.16.d. 

From each group we find the among class scatter matrices, SAi . For each of them we solve 
their eigen equations and the eigenvectors associated with the largest eigenvalues are selected to  
become the coefficients of the linear combination of the last four KL axes of the CS. These 
eigenvectors are shown in Table 7.17. 

A recapitulate, we have modified the space variant linear transformation method in the 
experiment because we are more interested in finding a good three dimensional space in terms of  
probability of error rather than implementihg a sequential classification procedure to simplify 
t h c  classification process, although the developed software is capable of doing this. In fact, the 
wlcction of the third feature can be intepreted as a different version of the weighted MDA 
riic%hod. The weights for the within scatter matrices are all zero and the weights for the among 
qrat1,t.r iij,it,rices are one for the classes considered close to  the particular class and zero for the 
c l : i c s ( .  ‘oilsidered far from the particular class. The result of the experiment is shown in the last 
c o l i i i l i i i  Table 7.24. 
7. 1’11t  KL Transform-MDA Hybrid Method: 

li  in the preceeding implementation, we select different third features for different groups 
of close classes, in this method we want to search for a single third feature applicable to all da ta  
by taking into consideration the class closeness information on PS and the class apriori proba- 
bilities. The  class closeness measure on PS will be calculated similar to  the one used in the 
Second Version of the Weighted MDA method (see 3.b). I t  will use the class pair Mahalonobis 
distance of Eq.(7.35) but applied on PS. Also it will use the three smallest pair distances instead 
of two and sum them similar to that in Eq.(7.36). Similar t o  tha t  of Eq.(7.37), we select the nor- 
malizing factor, which for our da ta  is c =11.45587 of the barren class or class 12. The closeness 
measures IC, are calculated similar to those of Eq.(7.38) and the weights Wi are calculated simi- 
lar to those of Eq.(7.34). The basic difference between this method and the Second Version of 
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the Weighted MDA method is that  the weights Wi are calculated by considering the class close- 
ness on the PS which is the KL 1 and KL 2 space. The search for the third feature is done by 
using the Weighted MDA method applied on CS i.e. the space spanned by the last four KL axes. 
The application of the KL Transform followed by the Weighted MDA method leads us to  refer 
t o  this method as the KL Transform-MDA Hybrid method. The weights for this method are 
shown in Table 7.11. The coefficients, which consist of the first eigenvector of the Weighted 
MDA applied on CS, for the linear combination of the last four KL axes t o  produce the third 
feature is shown in Table 7.17. The three dimensional transform is shown in Table 7.17.a., 
where the first and second vectors are the KL 1 and KL 2 axis respectively. The probability of 
error estimates for this method are shown in Table 7.24. 

pe I wi in Tables 7.18 t o  7.24 are the estimates of the class conditional probabilities of 
error given by Eq.(7.9). be and Few in these tables are the averages of the estimates of the 
class conditional probability of error as given by Eq.(7.10) and the weighted averages of the esti- 
mates of the class conditional probability of error as given by Eq.(7.11) respectively. 

7.3.3. Discussions of the Experimental Results 
A discussion of the experimental results will be presented and relevant conclusions will be 

drawn. The data  which have been used in the experiments of the dimensionality reductions by 
linear transformations are training samples of the six reflective bands of the Thematic Mapper 
(TM) da ta  from the area of Walnut Creek Watershed east of Austin, Texas. I t  was argued in 
subsection 7.3.1. that  these samples represent typical TM data  because of the broad range of 
classes existing in the set of data. Therefore the discussions and the conclusions will be more 
relevant t o  TM data  than to a general data set. From this point of view we start  to discuss the 
experimental results: 

1. From the resulting probability of error estimates, we can divide the linear transforma- 
tion methods into three categories: 
a. The group or the  KL and MDA methods, which include the Weighted MDA, Space Variant 

Linear Trasformation Method, and the KL Transform-MDA Hybrid Methods. For a three 
dimensional feature space, the worst average of the class conditional probability of error 
estimates for this group is 6.94 % from the Second Version of the Weighted MDA method, 
and the worst wcighted average of the class conditional probability of error estimates for 
this group is 7.52 % also from the Second Version of the Weighted MDA method, as shown 
in Table.7.21. 
The  TM-Tasseled Cap Linear Transformation, where for its three dimensional feature 
space the averagt’ of the class conditional probability of‘ error estimates is 7.27 % and the 
weighted average of the class conditional probability of error estimates is 8.04 %, as shown 
in Table 7.22. 
The  SVD-Linear Transformation Method, where for its three dimensional feature space the 
average of the c1;rS.s conditional probability of error estimates is 10.24 % and the weigliled 
average of the class conditional probability of error estimates is 11.31 %, as shown in 
Table 7.23. 

Recall that ,  the weights used in the averaging of the class conditioiial probability of error esti- 
mates are the class percentage areas of the ten classes or groups shown in Table 7.7. 

2. If we can rank the three categories given above, it appears tha t  the worst category is the 
SVD-Linear Transforniatioxi followed by t h e  TM-Tasseled Cap Linear Transformation and the 
best is the  KL and MDA category. 

3. The  SVD-Linear Transformation is designed with the assumption that  class conditional 
densities are Gau:;sian, as described in Sec.3. The rather bad results of this method compared t o  

b’. 

c. 



- 79 - 

Table 7.9. 
Eigenvectors and Eigenvalues 

- -  - of the KL Transform Method 
Eigenvectors 1 2 3 4 5 6 

0.3229 0.6286 0.2232 -0.1365 -0.5774 -0.3141 
0.3003 0.1312 -0.0697 0.0037 0.9212 0.1979 

0.3182 0.3944 0.0964 -0.1703 0.8083 -0.2268 
0.2901 -0.4 177 0.8445 0.1639 0.0138 -0.0341 
0.7086 -0.4224 -0.3702 -0.4118 -0.1133 0.0075 
0.4111 0.0790 -0.27 10 0.8667 0.0117 -0.0100 

Eigenvalues 985.55 136.85 88.17 9.66 7.01 1.80 
% 80.19 11.14 7.17 0.79 0.57 0.15 

Table 7.10. 
Eigenvectors and Eigenvalues 

of the MDA Method 

I 

Eigenvectors 1 2 3 4 5 6 
0.2849 -0.4332 0.2237 -0.5790 -0.2103 -0.0514 
0.1389 -0.3401 0.1916 0.6742 0.8300 0.7678 
0.3 'i (i h -0.4587 0.0384 0.1514 0.1267 -0.5522 
0.2382 0.5019 0.8114 0.0115 -0.1208 -0.0317 
o.(i,1;5 0.4308 -0.5033 -0.1319 0.2683 0.0287 

0.0082 0.1864 -0.6314 0.0422 0.5307 -0.2211 --- -- 
Eigenvalues 11.84 7.95 2.80 0.13 0.07 0.04 

% 51.84 34.83 12.28 0.58 0.30 0.18 
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Table 7.11. 
The Weights for the Weighted MDA Methods 

and for the KL Transform-MDA Hybrid Method. 

Class -- First Version Second Version Hybrid Method 
1 0.0174 0.0018 0.000088 
2 0.0282 0.0151 0.00096 
3 0.0952 0.0925 0.091058 
4 0.0476 0.0468 0.034238 
5 0.0281 0.0215 0.018273 
6 0.0302 0.0086 0.006763 
7 0.0208 0.0054 0.002958 
8 0.0531 0.0043 0.033373 
9 0.0464 0.0328 0.022365 
10 0.0217 0.0121 0.0067 17 
11 0.0264 0.02 10 0.013489 
12 0.01 72 0.0103 0.009399 
13 0.0467 0.1248 0.055323 
14 0.1100 0.1796 0.218767 
15 0.0618 0.1645 0.237842 
16 0.1162 0.0505 0.045643 
17 0.0440 0.0295 0.029758 
18 0.0457 0.0435 0.035198 
19 0.0335 0.0087 0.00461 
20 0.0391 0.0318 0.068144 
21 0.01 56 0.OOGl 0.003894 
22 0.0552 0.0496 0.061 141 

Weights 

-- 
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Table 7.12. 
Eigenvectors and Eigenvalues 

of the Weighted MDA Method, First Version 
Eigenvectors 1 2 3 4 5 6 

0.5187 -0.4420 0.1037 0.6757 -0.2889 -0.1447 
0.4385 -0.3670 0.1492 -0.4697 0.6581 0.8655 
0.5699 -0.3862 -0.1117 -0.4385 0.2385 -0.4731 

-0.0090 0.3447 0.9100 -0.0341 -0.1265 -0.0278 
0.0870 0.6241 -0.3418 0.1992 0.2344 0.0027 
0.4542 -0.1 117 -0.0983 -0.2996 -0.5963 0.0724 

Eigenvalues 11.05 6.44 2.06 0.10 0.07 0.04 
% 55.91 32.59 10.42 0.52 0.34 0.22 

Table 7.13. 

of the Weighted MDA Method, Second Version 
Eigenvectors and Eigenvalues ' 

Eigenvectors 1 2 3 4 5 6 
0.4401 -0.3746 -0.0705 0.6867 0.0812 -0.1776 
0.5528 -0.4438 0.0660 -0.4539 0.1202 0.9078 
0.5364 -0.4152 -0.2045 -0.5057 -0.6000 -0.3536 

-0.0 127 0.0206 0.9571 -0.0095 0.1213 -0.0661 
0.1381 0.6845 -0.0764 0.1443 -0.2651 0.0644 
0.4402 -0.1460 -0.1644 -0.2140 0.7307 -0.1041 

Eigenvalues 9.64 5.27 1.52 0.09 0.05 0.03 
% -  58.09 31.74 9.19 0.5 1 0.32 0.16 

Table 7.14. 
TM Tasseled Cap Coefficients 

1= Feature 
Brightness Greenness Wetness Fourth Fifth Sixth 

0.3037 -0.2848 0.1509 -0.8242 -0.3280 0.1084 
0.2793 -0.2435 0.1973 0.0849 0.0549 -0.9022 
(). 4 7 4 3 -0.5436 0.3279 0.4392 0.1075 0.4120 
0.5585 0.7243 0.3406 -0.0580 0.1855 0.0573 
(1.5082 0.0840 -0.7 112 0.2012 -0.4357 -0.0251 
0.1863 -0.1 800 -0.4572 -0.2768 0.8085 0.0238 
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-- 
Groups of Close Classes 

Table 7.15. 
Eigenvectors and Singular Values 

of the SVD Method 
1 2 3 4 5 6 Eigenvectors - 

0.5405 -0.5276 -0.5820 -0.0202 -0.0713 -0.2920 
0.2441 -0.1812 
0.3197 -0.0733 0.3189 0.6384 0.6101 -0.1046 
0.3589 -0.2988 0.6470 -0.597 7 0.0535 -0.057 1 
0.5784 0.5064 0.1649 0.2259 -0.5731 -0.0486 

-0.0864 0.0533 0.002 1 0.9472 

1 1 2 3 4 4 
2 2 3 4 5 5 

3 4 5 6 6 
6 8 6 8 8 
8 10 8 9 10 
10 12 10 10 12 
12 13 11 11 
13 14 12 12 
20 16 ,16 

0.2876 0.5811 -0.3261 -0.4254 0.5397 0.0300 
Singular Values 798.15 221.12 152.61 116.20 93.741 20.96 

% -  56.58 15.67 10.82 8.24 6.64 2.05 

Table 7.16.b. 
Groups of Close Classes 

-- , In the Space Variant Lin. Trans. Method. 
Class 7 8 9 lo 11 12 

Groups of Close Classes 7 2 4 7 4 5 
9 3 5 9 5 6 
10 4 7 10 6 7 
11 5 8 11 9 10 
12 6 9 12 10 11 

8 10 19 11 12 
9 11 12 
10 12 
11 16 
12 17 
16 18 

19 
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-- 
Groups of Close Classes 2 2 9 3 9 9 

10 3 10 4 15 10 
13 13 12 8 16 12 
14 14 15 9 17 15 
20 20 16 10 18 16 

21 17 11 19 17 
22 18 12 20 18 

20 15 21 19 
22 16 22 20 

17 
18 
20 
22 

Groups of Close Classes 9 2 10 14 
10 3 12 15 
12 10 14 17 
17 12 17 20 
18 14 19 21 
19 15 21 22 
21 16 22 

20 
22 
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1 2 
0.3229 0.6286 
0.1979 0.3003 
0.3183 0.3944 
0.2901 -0.4 177 

-- 

0.7086 -0.4224 
0.41 11 0.0790 

~~~ ~ ~ _ _ _ _  

Table 7.17. 
The Coefficients of the Last Four 

3 
0.1118 
0.2869 
0.0182 
0.8363 

-0.4500 
-0.0546 

H - 
Spiice Variant 

Hvbrid Method 

Axis ir 
Class 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

,he Complementary Space 
Coefficients 

0.6562 
0.9970 
0.9976 
0.9983 
0.9842 
0.9810 
0.9802 
0.9932 
0.9995 
0.9944 
0.9817 
0.9755 
0.9869 
0.9997 
0.9990 
0.9993 
0.9993 
0.9987 
0.9985 
0.9985 
0.9978 

0.3800 
-0.0524 
-0.0497 
-0.0489 
-0.1486 
-0.1656 
-0.1522 
-0.0861 
0.0226 

-0.0606 
-0.1558 
-0.1877 
-0.0006 
0.0141 

-0.0247 
-0.0060 
0.0345 

0.0449 

0.0306 

-0.0286 

-0.0356 

0.6461 
0.0542 
0.0462 
0.0295 

-0.0561 
-0.OG28 
-0.07 10 
-0.0485 
0.0008 

-0.0426 
-0.0623 
-0.0587 
0.1568 

0.0379 
0.0359 

0.043 1 

0.0421 

-0.0155 

-0.0107 

-0.0319 

-0,0561 

-0.0872 
-0.0 165 
-0.0120 
-0.0124 
-0.0778 
-0.0789 
-0.1045 
-0.0613 
-0.0229 
-0.0751 
-0.0900 
-0.0983 
0.0365 
0.0082 
0.0028 
0.0019 
0.0112 

-0.0010 
-0.0072 
-0.003 1 
-0.0158 

0.9996 '0.0232 -0.0113 0.0106 
0.9520 0.2367 0.0131 0.1937 
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Table 7.18. 
Estimate of Probability of Error 

of the K-L Transform. 
Classes are Groups as Shown in Table 7.7. 

B e  I w i  (%I 
Class 6-Dim 5-Dim 4-Dim 3-Dim 2-Dim l-Dim 

1 2.40 2.20 1.40 1.17 2.50 99.97 

:1 4.63 4.44 5.37 7.00 21.60 30.27 
4 10.07 10.47 8.93 8.91 22.82 68.09 
5 3.00 3.00 3.13 4.13 8.73 18.47 
6 9.87 9.73 9.80 9.87 46.80 85.27 
7 8.00 8.53 9.20 10.73 54.40 76.40 

!I 2.18 2.33 2.31 3.40 11.00 50.47 
10 2.18 2.27 2.07 2.44 24.93 34.76 

B e  (%I 5.44 5.59 5.56 6.10 24.54 63.29 
hew 5-94 6.10 6.31 6.93 31.22 62.96 I 

2 5.73 6.20 6.63 6.23 30.70 84.67 

8 6.33 6.73 6.73 7.07 21.87 84.53 

Table 7.19. 
Estimate of Probability of Error 

of the MJIA Method Transformation 
Classes are (iroups as Shown in Table 7.7. 

P e  I w i  (%I 
Class 6-Dim 5-Dim 4-Dim 3-Dim 2-Dim l-Dim 

1 2.40 1.77 1.30 1.20 2.93 22.20 
2 5.73 6.13 7.67 8.17 40.03 93.87 
3 4.63 4.71 6.76 7.69 21.63 75.57 
4 10.07 8.53 9.29 9.62 22.00 73.78 
5 ' 3.00 3.00 3.20 3.80 9.53 19.27 
t; 9.87 9.20 9.93 9.93 36.20 51.27 
7 8.00 8.53 10.20 10.67 46.80 100.00 
8 6.33 6.93 7.87 9.87 31.93 57.40 
I) 2.18 2.31 3.00 3.29 12.13 44.22 
10 2.18 2.07 2.91 3.00 24.91 33.93 

Be (%) 5.44 5.32 6.21 6.72 24.81 57.15 
5.94 5.94 6.99 7.44 29.83 61.64 fie, 
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Table 7.20. 
Estimate of Probability of Error 

of the Weighted MDA Method Transform (First Version) 
Classes are Groups as Shown in Table 7.7. 

Be I w i  (%I 
Class 6-Dim 5-Dim 4-Dim 3-Dim 2-Dim l-Dim 

1 2.40 1.87 1.30 1.33 2.57 40.67 
2 5.73 6.33 7.27 7.63 27.07 97.67 
3 4.63 4.76 6.04 7.51 20.87 37.00 
4 10.07 9.47 9.29 9.44 23.29 58.13 
5 3.00 2.73 3.20 3.73 8.07 70.00 
6 9.87 9.73 10.33 9.33 49.47 90.60 
7 8.00 8.33 9.27 9.93 54.80 54.80 
8 6.33 6.80 7.27 8.87 19.53 55.60 
9 2.18 2.24 2.80 3.16 11.18 64.98 
10 2.18 2.27 2.73 2.80 26.02 27.13 

B e  (%) 5.44 5.45 5.95 6.37 24.29 59.66 

- Pewm 5.94 6.04 6.72 7.01 31.19 66.30 

Table 7.21. 
Estimate of Probability of Error 

of the Weighted MDA Method Transform (Second Version) 
Classes are Groups as Shown in Table 7.7 

B e  I w i  
Class 6-Dim 5-Dim 4-Dim 3-Dim 2-Dim l-Dim 

1 2.40 1.97 1.33 1.50 4.37 39.00 
2 5.73 6.30 7.47 8.43 28.60 95.37 
:3 4.63 4.64 6.08 7.7 1 18.32 42.32 
4 10.07 10.20 8.93 9.87 26.51 55.96 
5 . 3.00 2.73 3.00 3.60 7.13 59.53 
ti 9.87 9.93 10.47 9.87 67.20 90.80 
7 8.00 8.67 9.40 10.53 43.80 55.93 
8 6.33 6.67 7.53 11.73 22.73 68.13 
9 2.18 2.24 2.93 3.29 18.02 60.29 
10 2.18 2.36 2.69 2.89 29.53 25.93 

B 5.94 6.15 6.79 7.52 39.95 65.45 cw 

---- 
fie 5.44 5.57 5.98 6.94 26.62 59.33 
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-- 
Table 7.22. 

Estimate of Probability of Error 
of the Tassel Cap Transform. 

Classes are Groups as Shown in Table 7.7. 
pe I w i  (%I 

Class 6-Dim 5-Dim 4-Dim 3-Dim 2-Dim l-Dim 
1 
2 
3 
4 
5 
(i 
7 
8 
I) 

2.40 1.90 1.50 1.53 8.20 21.90 
5.73 6.37 6.30 7.53 62.90 89.13 
4.63 4.44 6.01 7.59 23.65 69.81 

10.07 10.22 10.11 10.18 31.82 73.11 
3.00 2.73 3.13 4.40 13.07 22.13 
9.87 9.93 9.87 11.07 42.20 53.13 
8.00 8.67 10.13 12.20 56.40 87.20 
6.33 6.73 7.33 11.67 66.67 64.40 
2.18 2.27 2.96 3.87 15.24 43.47 

10 2.18 2.24 2.60 2.67 9.44 57.60 
~~~~ 

9, (%I 5.44 5.55 5.99 7.27 32.96 58.19 
B., (%I 5.94 6.13 6.66 8.04 37.21 62.00 

-- 
Table 7.23. 

Estimate of Probability of Error 
of the SVD Transform 

Classes are Groups as Shown in Table 7.7. 
pe I w i  (%I 

Class 6-Dim 5-Dim 4-Dim 3-Dim 2-Dim l-Dim 
1 2.40 2.03 1.87 1.57 13.47 25.17 
2 5.73 6.07 10.00 12.53 47.87 100.00 
;I 4.63 4.40 8.25 9.96 33.45 71.91 
4 10.07 10.53 13.80 13.16 32.11 63.82 
5 3.00 2.93 4.40 4.93 12.47 20.73 
ti 9.87 9.47 13.27 14.53 30.87 49.60 

8.00 8.73 14.60 16.87 25.13 77.73 
8 6.33 6.40 17.07 18.13 54.73 69.27 
9 2.18 2.31 4.78 5.76 22.31 44.22 
10 2.18 2.18 3.24 4.93 35.18 31.67 

8, (%I 5.44 5.51 9.13 10.24 30.76 55.41 
B e W B  - 5.94 6.02 9.80 11.31 31.18 58.48 

rr 

-- 
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Table 7.24. 
Estimate of Probability of Error 

of the Space Variant Linear Transform and 
the KL Transform-MDA Hybrid Method. 
Classes are Groups as Shown in Table 7.7. 

B e  I w i  
Class 6-Dim 5-Dim KL 4-Dim KL 3-Dim KL Sp.Var. Hybrid 

1 2.40 2.20 1.40 1.17 1.20 1.13 
2 5.73 6.20 6.63 6.23 6.30 7.93 
3 4.63 4.44 5.37 7.00 7.07 7.77 
4 10.07 10.47 8.93 8.91 9.18 10.02 
5 3.00 3 .OO 3.13 4.13 4.07 3.80 
6 9.87 9.73 9.80 9.87 9.93 9.40 
7 8.00 8.53 9.20 10.73 10.73 10.13 
8 6.33 6.73 6.73 7.07 7.07 7.93 
9 2.18 2.33 2.31 3.40 3.40 3.33 
10 2.18 2.27 2.07 2.44 2.44 2.96 

k 5.44 5.59 5.56 6.10 6.14 6.44 
Pew (%) 5.94 8.10 6.31 6.93 6.96 7.12 

Assigned 
Class 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Table 7.25. 
The Error Matrix 

of the 3-Dim. KL Transform. 
Classes are Groups as Shown in Table 7.7. -- 

Reference Class 
1 2 3 4 5 6 7 8 9 10 

2965 16 16 21 29 1 0 0 0 3 
6 2813 83 14 31 28 0 7 0 6 
3 120 6975 315 0 0 0 63 50 0 
3 12 326 4099 0 1 0 3 64 0 

18 1 0 0 1438 40 0 0 0 1 
0 5 0 0 2 1352 4 1 1 18 
0 0 0 0 0 18 1339 3 7 14 
0 20 20 4 0 18 32 1394 7 34 
0 0 78 39 0 0 66 25 4347 34 
5 13 2 8 0 42 59 4 24 4390 

-- 

-- 
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the other methods indicate that  the class conditional densities of the classes in the T M  data  are 
not Gaussian although they may be still unimodal. This conclusion is intuitively reasonable 
since ground objects in the pixels, depending on the resolution of the da ta  acquisition system are 
combinations of severid prirnury objects such as soils, vegetation, man made objects, grass etc. 
These combinations are rather constant for the more homogeneous objects such as grass fields, 
forest or agricultural categories. But the combination will change rather abruptly from one 
homogeneous object to any other homogeneous object. TheHe characteristics also occur in less 
homogeneous objects such tis in residential areas, but  with larger variations of the reflectance of 
the da ta  than of the more homogeneous objects. Therefore the high peaking of the mode and 
the asymptotic decrease of the data  distribution from a class having a Gaussian distribution 
may not happen in prxtice.  What may happen is tha t  the class data distribution is rather con- 
s tant  around the mean or mode, possibly with a rather small peak and jump to zero rather 
abruptly at the boundaries of that  class with other classes. This deviation from the Gaussian 
class model is also indicated indirectly by the poor estimate of the Bayesian optimum probabil- 
ity of error, shown as Be in Table 7.6., compared to  the non parametric probability of error 
estimates. 

4. Related to 3 above, a question tha t  may arise is why the Gaussian ML classifier works 
rather well for the linear transformations other than the SVD-Linear transformation. These can 
be seen in Tables 7.18 to  7.24. The answer to this is that  from the nature of the Gaussian ML 
classifier (see Eq(7.12) and (7.13)), i t  becomes a measure of the weighted distance from the class 
mean vectors to  particular points. I t  does not require that the number of points per hypervo- 
lume or the density in a particular position in the space follow the Gaussian distribution. The 
classification rule only shows the equidistance ellipsoidal forms around the class mean vector or 
more precisely tha t  the classifier model the class data  scattering as ellipsoid. But this classifier 
does not require the density or the number of points per hypervolume in a certain position in 
the space t o  have a Gaussian distribution. The modelling of the class data  scattering in the T M  
image as ellipsoidal or a blob seems more appropriate where the position of tha t  ellipsoid is given 
by its class mean vector and the measure of the size and orientation of the data  scattering is 
given by the class covariance matrix. Therefore the application of this ML classifier as the 
weighted distance measure from a class mean vector is still appropriate although it  is initially 
designed for Gaussian distributed class. 

5. The  TM-Tasseled Cap Linear Transformation is ranked in the middle h , 1 . ( ~ 1  on our 
observation of the probability of error estimates. Actually the differences betweerr 1 1  I itrobabil- 
ity of error estimates for this method and those of the other methods considered I L.ive better 
performance is marginal and not significant. Thc reason why this method is no: 1jii1 into the 
same category as the KL and MDA although its performance is only marginally worse than 
these methods is because its design is totally different. This transformation is bascd on the phy- 
sical properties of the six reflective bands of the T M  images[l4, 15, 161 and is intended to be 
applicable to any six reflective band TM image. Thus the design of this transformation does 
not have a direct relationship with our particular T M  data set. The authors of the cited refer- 
ences claim that  any TM image can be represented by a three dimensional space where its 
features are the brightness, greenness, and wetness features of the TM-Tasseled Cap Linear 
Transformation. Our experimental result extends the result of the cited reference tha t  the three 
dimensional feature of the TM-Tasseled Cap Linear Transformation not only can be used for 
da ta  representation but  can give comparable probability of error performance with other 
methods which are designed for our particular TM data  set. However, its performance is con- 
sistenly slightly worse than that of the other methods designed for our particular TM data set. 
This experimental result for the TM-Tasseled Cap Linear Transformation is important in terms 
of complexity of the design. The complexity of the design of this method is very low. 
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6. In discussing the best group of linear transformations, i.e. the group which includes the 
KL transform, MDA, First and Second Version of the Weighted MDA method, the Space Vari- 
a n t  Linear Transformation and the KL Transform-MDA Hybrid Method, we will relate the 
experimental results with the argument that our data set is a typical TM data  set, as discussed 
in Sec.7.3.1. The experimental results of this group of linear transformations show tha t  the pro- 
bability of error estimates of their three dimensioiial features are always almost equal or are not 
too much worse than those of the six dimensioii.tl raw data. An example of this is for the worst 
method in this group Le. the Second Version of the Weighted MDA method, where the average 
of the class conditional probability of error estimates of the six dimensional raw da ta  is 5.44 % 
whereas for the three dimensional feature space i t  is 6.94 % (see Table 7.21). This phenomenon 
to  some degree is also shown by the experimental results of the TM-Tasseled Cap Linear 
Transformation, where the average of the class conditional probability of error estimates of six 
dimensional raw data  is 5.44 % whereas for the three dimensional feature space i t  is 7.27 % (see 
Table 7.22). A considerable increase in the probability of error estimates when we decrease our 
dimensionality t o  two are observed in the experimental results for any of the linear transforma- 
tion methods in this group and likewise of the TM-Tasseled Cap Linear Transformation 
method. An example of the increase is the 24.54 % of the two dimensional feature space and 
6.10 9% of the three dimensional feature space for the averages of the class conditional probabil- 
ity of error estimates for the KL transform method (see Table 7.18). This shows tha t  the six 
reflective band TM data  requires a three dimensional feature space regardless of the particular 
linear transformations chosen from this group, including the KL, MDA, the First and Second 
Version of the Weighted MDA methods. In some sense the TM-Tasseled Cap experimental 
results show the same characteristic of the six feflective bands TM images. Because of this, the 
Space Variant Linear Transformation and the KL Transform-MDA Hybrid methods are 
designed to utilize only no more than three dimensional feature space for classification of the 
T M  image. 

7. For three dimmsional spaces, the KL transform represents 98.50 % of the variation of 
the data  (see Table 7.9), and none of the remaining eigenvalues exceeds 1 %. The MDA method 
represents 98.95 % of the variations and none of the remaining eigenvalues exceeds 1 % (see 
Table 7.10). Similarly as shown in Table 7.12. and 7.13., the First Version and the Second Ver- 
sion of the Weighted MDA methods show more than 95.0 % variations are represented in the 
three dimensional feature space and none of the remaining eigenvalues exceeds 1 %. These four 
methods certainly represent most of the variations in their three dimensional feature space 
measured by percent cummulation of their three largest eigenvalues. However, for a two dimen- 
sional feature space, the remaining eigenvalues will be very large. For example, the KL 
transform, for a two dimensional feature space, only represents 91.33 % of the variation and one 
of the remaining eigenvalues is still large i.e. 7.17 % for the third eigenvalue (see Tablc 7.9). It 
is worth noting here the rule of thumb suggested by Merembeck and Turner[lO] which says that 
we should select the space with variation exceeding 95 % and none of the remaining eigenvalues 
should exceeds 1 !%. Therefore from the point of view of the utilization of the variations given 
by the cummulative percentage of the eigenvalues, we should use, for these four methods 
applied to the TM image, their three dimensional feature space. 

8. The experimental results also show that the linear transformations designed for our data 
set, the KL, MDA, First and Second Version of thv M'righted MDA, the Space Variant Linear 
Transformation and the KL Transform-MDA II) hiid methods but  not the SVD-Linear 
Transformation method, are consistently better thaii I lic result of the TM-Tasseled Cap Linear 
Transformation. This shows that although the TM-'l';is:-cled Cap Linear Transformation is very 
simple to use, a more complez method may allow us Lo do some futlier adjustments appropriate 
for the da ta  on hand t o  achieve better performance such a3 done in the Weighted MDA, the 
Space Variant Linear Transformation and the KL Transform-MDA Hybrid methods. 
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9. Comparisons between methods in the best group i.e. the KL Transform and MDA 
methods are difficult t,o make. The performance differences shown by the experimental results 
are very insignificant. This may be because the ratios between the number of classes,i.e. 22 
classes, and the dimensionality is already large for the six reflective bands of T M  data. The  ratio 
are from - for the raw data  up to  - for the three dimensional feature space. This tendency 

to achieve similar performance especially for the MDA method was predicted in the theoretical 
analysis (see Sec.3.), where the MDA method may yield similar transformation t o  that  of the KL 
transform method which uses the global statistics of the data, if the number of classes is too 
large. 

10. For the two different eigen equations of the MDA methods i.e. the ones shown in 
Eq.(7.14) and (7.15), it was shown analytically that  for the Gaussian ML classifier of Eq.(7.13), 
these two different methods will yield exactly the same classification results. The proof for this 
is given in Sec.7.3.2. This is to  be emphasized because one report prefer one t o  the other[lO] 
although i t  applies the Gaussian ML classifier as one of their implemented classifiers. 

11. Now we wan(, to compare the four variations of the MDA method, the ordinary MDA, 
the First and Second Version of the Weighted MDA methods and the KL Transform-MDA 
Hybrid method. Except for the ordinary MDA, the methods use unequal weights in computing 
the among class scatter and within class scatter matrices. The weights are shown in Table 7.11. 
for the 22 classes. Before we continue we want to  explain something to prevent unexpected con- 
fusion. The  weights shown are for 22 classes because the classifications in the experiments are 
done for 22 classes. But the probability of error estimates shown here are of the 10 group 
classes, where the groupings of the 22 classes are shown in Table 7.7. Fortunately, the classes 
whose weights are large, where the effects of these large weights are expected to reduce the class 
conditional probability of error estimates, are groups containing single class. From Table 7.7, 
those classes are clase 13 which becomes group 5,  class 14 which becomes group 6, class 15 
which becomes group 7 and class 16 which becomes group 8. Therefore the class conditional pro- 
bability of error estim:ztes of these classes in the 10 class case are the same with the ones of the 
22 class case. The class numbers mentioned in the following are of the 10 class case. 

For the KL Transform-MDA Hybrid method, classes 6 and 7 have very large weights. Both 
classes yield better class conditional probability of error estiniates (see Table 7.24), compared to 
those of the  %dimensional ordinary MDA methods (see Table 7.19). They are even better than 
those of the 3-dimensional KL transform method. Howevet the classes with low weights have 
higher class conditional probability of error estimates such that  the weighted average of the 
class conditional probability of error estimates is still not as good as that  for the KL transform, 
although the difference is not significant. Similar tendencies also shown by the First and Second 
Version of the Weighted MDA methods, as indicated by the class conditional probability of 
error, especially lor the bdimensional cases in Table 7.20. and 7.21. The point we want to 
make is tha t  by varying the weights for computing the among class scatter and within class 
scatter matrices, we can expecl to reduce class the conditional probability of error estimates by 
assigning high weights to particular classes. Ideas about how to incorporate the class closeness 
measure and clasri apriori probability into the weights have been discussed in the discussion of 
the First and Second Version of the Weighted MDA and the KL Transform-MDA Hybrid 
methods. 

12. For the Space Variant Linear Transformation experiments, there is an  interesting 
result. When we apply the ordinary MDA in the Complenientary Space (CS), see Sec.6. for 
detail description, for the group of classes consisting of classes Water 1 and Water 2, we get 
rather large classification error between these two classes. This is not expected because the 
number of class invohe in this MDA method is only two. Therefore we suspect tha t  the class 

22 22 
6 3 
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covariance matrices OS these two classes are very different such tha t  the within scatter matrix 
which basically is the average of those two class covariance matrices is not a good representa- 
tion of either of the two class covariance matrices. I t  turns out  using the likelihood ratio test for 
testing the equality of covariance matrices[ 171, these two matrices are significantly different 
which yields a within scatter matrix that  will not represent any of these two covariance matrices 
properly which subsequently will not represent the class data  scattering properly as well. This 
can affect the resulting transformation significantly because in the MDA method the class 
scattering is maximized where the classes are represented by the class mean vectors incorporated 
in the among scatter matrix, SA,  and the within class scatter is minimized where the within 
class scatter Sw is the average of the class covariance matrices. If the within class scatter 
matrix Sw does not represent all the class covariance matrices then the resulting transformation 
will be invalid as shown by our experiment. 

Because of this large difference in the class covariance matrices in the CS in particular for 
the classes Water 1 and Water 2, and also because of the variations of the data  in the CS occur 
primarily in the third KL axis, irs shown by the precent eigenvalues in Table 7.9., we decide 
tha t  the MDA applied to  each group of close classes in CS will only depend on the class mean 
vectors of the classes member of that  group. This means we will neglect the class variation 
information which are in the class covariance matrices. Therefore the coefficient for the linear 
combination to  search for the next feature for each group will be of the eigenvector associated 
with the largest eigenvalues of the among class scatter matrices of each group. The resulting 
coefficients are shown in Table 7.17. This strategy gives better results than applying the ordi- 
nary MDA t o  each close class group. One interesting result worth noting is tha t  except for the 
Water 1 group, the rest of the groups give very high weights to  the third KL axis (see Table 
7.17). This means that the search of the best next feature of each group points to the third KL 
axis regardless of the number of classes and the class members of the group. The class members 
of the close class groups are shown in Tables 7.16.a. to 7.16.d. Since the third KL axis is used 
primarily as the third features in the Space Variant Linear Tranformation then the performance 
of this method is practically the same as that  uses the three dimensional KL features. 

13. One thing is worth consideration from the above discussion. That  discussion reveals 
tha t  there are other characteristics that  can cause the MDA method to  fail. In the theoretical 
analysis discussed in Sec.3., we suggest that  the number of classes affects the performance of the 
MDA method such that  if the number of classes is too large relative t o  the dimensionality, then 
the MDA may converge to  the KL transform method which is based on the global statistics of 
the data. However, the discussion of 12 above, shows that for small number of classes, in fact 
the experiments only involve two classes i.e. classes Water 1 and Water 2 in the CS, the MDA 
method yields poorer performance compared to tha t  produced by the KL transform method. I t  
turns out that  the problem is caused by too large a difference of the two class covariance 
matrices. 

The  class covariance matrices should not vary too much from class t o  class so that  the 
within scatter makrix, Sw, which is the average of the class covarimce matrices, can represent 
the within class data  scattering properly. If the class covariance matrices vary too much then 
the representation of the within class data  scattering by the Sw matrix will not be valid. This 
can be very critical if the number of classes is very small, for example, in the two class case. 
However, i t  appears that  for large number of classes, the performance of the MDA method is 
not affected greatly by the variations in the class covariance matrices. The experimental results 
show, as shown in Table 7.18. for the KL Transform and in Table 7.19. for the MDA method, 
tha t  the MDA method and the KL transform method give similar results where this experiment 
is evaluated for the 22 class. 
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14. The experimentation for the Space Variant Linear Transformation method has not 
been complete as was intended initially, as described in Sec.6. for the full implementation and in 
Sec.7.3.2. point 6, for the modification in the implementation for the experiments. The full 
implementation is worth further study and more experiments with this method, especially for 
various data  sets, not necessarily the ground images, may be worth pursuing. The  developed 
software used for the current experiment is able t o  do the full implementation of this method. 
Simpler classification strategies might be found by fully implementing the method. However, one 
disadvantage of this method is that i t  cannot produce a lower dimensionality image. For exam- 
ple in our implementation for the experiments, the three dimensional images are different from 
group to group. In fact this property is the reason for adopting the name Space Variant Linear 
Trans for mat ion. 
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8. Summary and General Conclusions 
of Dimensionality Reduction Part 

We have studied the properties of several linear transformation methods for dimensionality 
reduction. Theoretical derivations as well aa experimental studies have been presented. Several 
methods have been proposed and experimental results for the existing and some of the proposed 
methods have been acquired. The summary and conclusions to  be given in this section are those 
which we consider important, however more detailed conclusions have been given at the end of 
most of the preceeding sections. 

The summary and general conclusions are as follows: 
1. The analytical tractability, computational complexity, and the experimental results show 

tha t  methods t o  find the transformation matrix A for reducing the dimensionality using the 
solutions of eigen equations are optimum. Moreover, these methods give an indication of the 
appropriate reduced dimensionality. This is done by ordering the eigenvalues and discarding 
the features, represented by the eigenvectors, having non significant eigenvalues. 

2. A unified approach to  dimensionality reduction by linear transformation is presented 
where each method involves optimizing an objective function with respect to the linear transfor- 
mation matrix A .  For the methods based on the solutions of the eigen equations, where Ihe 
matrices involved in the equations are symmetric, the unified approach has a general form. It is 
the optimization of the objective function (see Sec.5. for details): 

J ( A ) = T ~ w ~ ( A ~ ~ ~ A  D i a g ( l / g , ; i = l , .  . . , d ) )  

with the constraint, 

A ~ ~ ~ A  =gi { lii 
where the matrices 

3. For the two different KL representations, as shown in Eq.(3.15) and (3.24), we show tha t  
under the minimum mean squared error criterion the KL transform based on the eigen equation 
of the covariance matrix, rather than the correlation matrix, of the data  is the optimal. 

4. For the two diffefent forms of the eigen equations for the MDA methods, as shown in 
Eq.(7.14) and (7.15), we show that  the resulting linear transformation matrices of both eigen 
equations wiil produce the same classification results if the Gaussian maximum likelihood 
classifier is applied. 

5. For noisy data  or observations subjected to  additive noise, we propow two different 
methods (see Sec.4). We refer to them as the Minimum Mean Squared Error Criterion Based 
Factor Analysis and the Signal to  Noise Ratio Based Dimensionality Reduction. The first 
method is a modified solution of the standard Factor Analysis method which consists o f  a 
sequence of two standard methods, the Wiener filter followed by the KL transform. We show 
tha t  the mean squared errors of the two methods are additive which means that  the errors of 
the steps are orthogonal or, more precisely, uncorrelated. Since the Wiener filter and KL 
transform minimize the mean squared errors then this proposed method will also minimize the 
total mean squared error. 

6. For the Signal to  Noise Ratio Based Dimensionality Reduction method, the unified 
approach discussed in point 2. can be applied where the matrix 3A is the data covariance 
matrix, the matrix 2, is the noise covariance matrix, and the constants 9, are unity. We did 
not perform any experiments with these two proposed methods for noisy observations. 

8, and the constants gi are dependent on the particular method. 
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7. In Sec.6. we propose a method refered to  as the Space Variant Linear Transformation, 
where different transformations are applied in different regions of the feature space. This 
method basically applies a sequential classification method in which the next classification if 
required, will be done in the space designed specifically for the location of tha t  sample in feature 
space. However, one drawback of this method is that  we do not have a fixed reduced dimen- 
sionality image for all of the data. Therefore for classification, this method requires the original 
raw data i.e. the data with the original dimensionality. In the experiment for this method, only 
a partial implementation was made and the results show tha t  it performs, in terms of probabil- 
ity of error estimates, almost as well as the KL transform. Full implementation of this method 
t o  test its performance with respect t o  reducing the computational complexity is worth pursuing 
in the future especially for different types of data. The developed software used in the experi- 
ments can be used for the full implementation of the method. 

8. In the effort to acquire the training samples, to be used in the experimental comparisons 
of the linear transforination methods, we perform a method which we refer t o  as interactive 
maximum likelihood (ML) clustering on the TM Data, as described in Sec.7.2. The method 
classifies the data using a Gaussian maximum likelihood classifier with some operator interven- 
tions in the case of: 

a. 
b. Resolving class conflicts 
c. Creating additional classes 

Finding the training samples of recognizable classes in the satellite images 

These interventions are performed using a high resolution Gould IP8500 image processor and its 
associated software supports. The  results for this clustering method in terms of the percentage 
area of the classes is shown in Table 7.5. 

9. An attempt to  quantify the performance of the interactive ML clustering method was 
made, as described in Sec.7.2.3. This was done by acquiring randomly 3000 training samples per 
class of the classified image or the map produced by the clustering method. Then, Gaussian ML 
classification was applied to  those training samples and the resulting average of the class condi- 
tional probability of error estimates is B.54% and the resulting weighted average of the class 
conditional probability of error estimates is 10.63%, as shown in Table 6.6. What actually per- 
formed in this attempt is to  perform the Gaussian ML classifier, which is the classification per- 
formed in the last step of .the interactive ML clustering, t o  the subset of the data. The subset of 
the data  are the class training samples which were acquired randomly. 

This attempt can also be considered as a way to measure the sensitivity of the class assign- 
ments to the changes in the decision boundaries. In the Gaussian ML classifier, these decision 
boundaries are dependent on the class parameters. The class parameters i.e. the class mean vec- 
tors and the class covariance matrices, are estimated from the design set which is a subset of the 
training samples acquired for the estimations. These new class parameters are expected to be 
different, although not greatly different, than those used in the last step of classification in the 
interactive ML clustering. If changes of the decision boundaries produces high probability of 
errors, i t  means that  the density of points in the region close t o  the decision boundaries is high, 
which also indicat,es that  the probability of errors in the last classification of the interactive ML 
clustering is high as well. This occurs because the probability of error mainly depends on the 
density of points in the region close t o  the decision boundaries. Therefore, we can quantify the 
probability of error occuring in the last classification of the interactive ML clustering method by 
applying the Gaussian ML classification to the subset of data. 

More theoretical analysis of the method t o  quantify the performance of the preceeding 
classification using the training samples acquired from the classification results of that  
classification is needed. This method does not require ground truths data, which often is difficult 

. 
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or expensive t o  acquire, but  i t  still allow us to use the non parametric method, which does riot 
depend on the class probability distributions, to estimate the probability of classification error. 

10. We argue, as described in Sec.7.3.1., that  the training samples used in the experiments 
represent a typical Th4 data set because a wide range of classes exist in the data  set. Therefore 
the conclusions of the results of the linear transformation experimental comparisons are more 
relevant for TM data rather than for a general data set. 

11. From observations of the group of methods which yield the best performance Le. the 
group containing the KL, MDA, Weighted MDA, Space Variant Linear Transformation and the 
KL Transform-MDA Hybrid methods, the data of the six reflective TM images can be classified 
in a three dimensional feature space. This conclusion is based on the cumulative eigenvalue per- 
centage and the probability of error estimates of the three dimensional feature spaces of these 
methods. From Table 7.18. for the KL transform, Table 7.19. for the MDA method and Tables 
7.20. and 7.21. for the First and Second Versions of the Weighted MDA methods, we can see 
tha t  the probability of error estimates do not change very much up to  three dimensional feature 
spaces and then increase considerably in the two dimensional feature spaces. Therefore we con- 
clude tha t  for these methods the T M  data also can be classified in three dimensional feature 
spaces. 

12. The experiment for the TM-Tasseled Cap Linear Transformation, as given in Table 
7.22., shows as well tha t  the data of the six reflective TM images can be represented by the first 
three features of the TM-Tasseled Cap Linear Transformation. These features are (see Sec.3.3.4. 
and Table 7.14.) brightness, greenness and wetness. Therefore from this conclusion and the 
preceeding one, point 11, we can conclude that for the six reflective T M  data  bands, for the 
methods mentioned in point 11 and the TM-Tasseled Cap Linear Transformation, only three 
dimensional features are required to achieve probability of error comparable to that  of the six 
dimensional raw data. 

13. The high probability of error estimates produced by the SVD-Linear Transformation 
method, as shown is Table 7.23., but rather low probability of error estimates produced by the 
other methods, show that  the Gaussian class distribution assumptions may not be correct. This 
method relies very heavily to these assumptions, as described in Sec.3.5. The class unimodality 
assumptions appear to be satisfied since the MDA method which relies on these assumptions, as 
described in Sec.3.4.) performs rather well. However the applicability of the Gaussian maximum 
likelihood classifier t o  the unimodal classes is still justifiable if we consider the Gaussian ML 
decision rule as the minimization of the weighted Euclidian distances from the class mean vec- 
tors to a particular sample. These weighted distances only display the ellipsoidal equidistance 
forms from the class mean vectors or more precisely these weighted distances model the class 
da ta  scattering as ellipsoids. The centroids of these ellipsoids are given by the class mean vec- 
tors and the relative sizes and orientations are given by the class covariance matrices. These 
modells do not require that the number of points per hyper volume or the densities of the data 
at a particular location in the feature space meet the Gaussian distributions. 

14. The performances of the KL transform and the MDA methods in terms of their proba- 
bility of error estimates are almost identical. The performances of the Weighted MDA methods, 
the KL Transform-MDA Hybrid are also very similar. Therefore the selection of the method to 

be applied must he based on the simplicity of the design of the linear transformation matrix A 
and the availability of the class training samples. The MDA method requires class parameters, 
and if they are not available, they must be estimated from the class training samples. if  class 
training samples are available, the MDA method and its variations are simpler t o  implement 
than the KL transform method. The reason is tha t  the KL transform requires the calculation of 
the da ta  covariance matrix estimate. However, in term of complexity of the design of the linear 
transformation matrix A the TM-Tasseled Cap Linear Transformation is the best because the 
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design complexity for this method is trivial. This method only applicable to the six reflective 
T M  data  only, but  not to a general data set. 

15. We propose and perform experiments on two modified versions of the ordinary MDA 
method, which are the First and the Second Versions of the Weighted MDA methods, and one 
modified version of the KL transform, which is the KL Transform-MDA Hybrid method, 
described in Sec.7.3.2. Basically these modified methods emphasize some classes more than the 
others by assigning different weights for different classes in the calculations of the among class 
scatter SA and the within class scatter Sw matrices. In the KL Transform-MDA Hybrid 
method, the weighted MDA method is applied to  find the third feature as a linear combination 
of the last four KL features i.e. the complementary space where the first two features are the 
first and the second KL features i.e. the preliminary space. The factors which determine the 
class weights are class closeness and class apriori probabilities. 

The experimental results, shown in Tables 7.20.,7.21. and 7.24., show the expected result 
tha t  the classes with high weights yield lower class conditional probability of error estimates 
than the ones of the ordinary MDA method. Moreover, the classes with high weights in the KL 
Transform-MDA Hybrid method yield lower class conditional probability of error estimates than 
the ones of the ordinary KL transform method. Thus, improvements over the ordinary MDA 
methods by the First and Second Version of the Weighted MDA methods and over the ordinary 
KL transform by the KL Transform-MDA Hybrid method for the classes with high weights have 
been shown as expected. However, the average or the weighted average of the class conditional 
probability of error estimates of those modified methods are not improved. This is due to  the 
increase of the class conditional probability of error estimates of the classes with lower weights 
which overcome the dccrease of the class conditional probability of error estimates of the classes 
with high weights. 

The most important conclusion about the performance shown by the experimental results 
of these modified methods is that we can improve class conditional probability of error estimates 
of some classes by assigning high weights to them. Which class conditional probability of error 
estimates we want t o  improve are dependent on the application. 
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Part II 

Geometric Accuracy 
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9. Analysis of Geometric Accuracy 
The second objective of this project is to  quantify the accuracy of the correction of 

geometric errors in TM imagcry. Our approach to  this task is to  perform a ground control 
point (GCP) based bivariate polynomial coordinate transformation to rectify the TM image to  a 
map projection, and to  analyze the errors in this transformation. 

T o  support this task, we developed a method for coordinate transformation based on the 
method of least squaresll], which is summarized in section 9.1. This method has been found to  
be numerically unstabJe in some situations, so the method was modified t o  employ orthonornral- 
ized polynomial basis functions, as described in section 9.2. In section 9.3, we apply the 
modified method to  the geometric rectification of a Landsat 4 TM subscene. 

9.1. Least- Squares Coordinate Transformation 
The method of least-squares can be used to  derive a bivariate polynomial coordinate 

transformation to rectify the geometry of satellite images. For this project, we have derived 
expressions for the accuracy of the geometric transformation and of the rectification of the 
image to  a map projection as a function of the number, location, and local accuracy of the 
ground control points used to  characterize the transformation. This work has recently been 
published [l]. In this section, we provide a short summary of this work. 

Geometric correction can be interpreted as a least-squares coordinate transformation proh- 
lem, and the known results from least-squares methods can be applied to the Groblem. In t h i s  
approach, the geometrical distortion in the acquired image is modeled as a mapping transforma- 
tion from the desired map projection coordinates to  the acquired image coordinates. Denoting 
the map coordinates by (z1,z2) and the image coordinates by ( y l , y 2 ) ,  the mapping function is 
usually chosen to be a bivariate polynomial: 

y j  = #(X)CYi, j = 1,2 (9.1) 

where #(x) is a p X 1 vector of polynomial functions of the map coordinate vector x, and al is 
a p X 1 vector ol' unknown coefficients. 

The coefficients are determined from a set of n ground control points (GCPs). The n x 1 
vector of image GCP observations, yI, is assumed to be fixed but  subject to  measuremrnt 
errors due to  tht: limited image resolution and the resulting difficulty in locating the GCP 
features. These observations are assumed to be statistically independent, so the n X n covari- 
ance matrix, E , ,  will be diagonal. The uncertainty in the corresponding map GCP locations, 
x , ,  i = 1 ,  2, . . . , n ,  is assumed to be negligible. 

The least-squares prohlem is to determine the estimated transformation vector, &, , tha t  
minimizes the weighted sum of the squares of the residuals 

J .  I = r j w j r j  

wlic~re W 
i i i : t t  rix, 2"; and r, is the n X 1 vector of residuals 

is the n x n weight matrix, taken to  be the inverse of the image GCP covariance 

r ,  = Y ,  - 3 ,  (9.3) 

and 9 ,  is the estimated image GCP location vector. 
Defining the n x p matrix of tmiisf'ormed observed map GCPs as a, where the ith row of 

is 4T (x, ), the estimated image GCP location vector is 

3 ,  = a 6 , .  (9-4) 

The estimated transfor mation coefficient vector is then given by 
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&j = [*TW, Q,]-lQ,TW,yj. (9-5) 

s,, = [@TWjQ,]-l (9.6) 

An indication of the precision of this transformation is given by an estimate of the covari- 
ance of the of the coeflicient estimate 

This covariance estimate is a function of the locations of the map GCPs through Q, and tlie 
variances of the image GCP measurement errors through W, . 

The precision of the transformation is indicated by an estimate of the variance of the 
estimated value of the image coordinate 

s.2 y3 = 9’(X)(@Wj Q,]-’4(x). (9.7) 

This expression provides an estimate of the error variance at any point in the map space for a 
specific set of GCP observations. 

The “goodness of fit” of ( l i t ,  tr:insformation can be assessed from the weighted sums of 
squared residual error, J l  and .I2. These sums have a chi-squared distribution with n - p 
degrees of freedom, and the conlitlcnce region at a significance level a: is 

where x ~ : , ~ - ~  is the value of tlic chi-square distribution at significance level a: and n - p degrces 
of freedom. 

The problem encountered in implementing this method as a computer algorithm is that the 
least-squares nornial matrix, Q T  Wj 9, is often unstable, leading to  numerical problems in com- 
puting its inverse. The instability is caused by the large dynamic range of the element values. 
The problem can be solved by orthonormalizing the basis functions, which is described in the 
following section. 

9.2. Use of Orthonormalized Basis Functions 
T o  resolve the numerical problems associated with the least-squares coordinate transforma- 

tion, a method based on orthonormalizing the basis functions has been developedI21. In this 
method, the basis functions for the transformation are chosen such that  the normal equatioti 
matrix is an identity. The new p X 1 vector basis function ~ ( x )  can be chosen to  be a Iiiivar 
function of the original basis functions 

v(x) = A 4 ( 4  (9 .8)  

V = Q , A T .  (9.9) 

Y ,  =Q,,  (9.10) 

a, = [VTWtV]-lV*W, y, (9.11) 

where A is a p X p matrix. The matrix of transformed observed map GCPs is then 

With this new set of basis functions, the estimated image GCP location is 

where B, is a p x 1 vector of coc#icierits, which, through the use of equation (9.5), is given by 

The problem is now to choose A such that 

V T  w, v = ( w f / V ) T ( W y V )  = I (9.12) 

This is equivalent to orthonorinalizing the weighted basis functions, W,’I2Q,. The orthornormal- 
ized basis functions, V(X) and the associated matrix A can be generated from the original basis 
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functions, t#J(x), through the use of the Graham-Schmidt procedure[3]. With this choice of A, 
the expression for the orthonormal transformation coefficients becomes 

B] = VTW] y , .  (9.13) 

Substituting equation (9.9) into equation (9.10), the expression for the estimated image vector 
becomes 

9 ,  = + A T P l .  (9.14) 

By comparing this with equation (9.4), we find the relationship between the coefficient vectors 

ii1 = AT@, . (9.15) 

T h u s ,  the estimate of the coefficient vector based on the original basis function> is given by 

Cj, :=ATVTW,yI = A T ( @ A T ) T W I ~ , = A  TA@TW, y , .  (9.16) 

Then i y  aiivther property of the orthonormal transformation that  will prove useful. From 
equations (9.9) and (9. L2), we have 

IW,’/29AT]TW,’/2@AT = I. (9.17) 

By algebraic manipular,ion of this equation, we find 

A ~ A  = [ c p T ~ j c p ] - l  (9.18) 

Thus, thv quanti1,y on the right hand side of the equation, which is the inverse of the nor~iiiil 
equation matrix for the original basis functions, can be computed from the transforniativn 
matrix A obtained by Graham Schmidt orthonormalization. 

The orthonormalized approach is also useful in evaluating the precision of the transforma- 
tion. The cstiniate of the covariance of the original coefficient vector, from equations (9.6) and 
(9.18), becomes 

s. = A ~ A  (9.19) 
“ J  

The estimatcr o f  the error variance at any point in map space, from equations (9.7) and (9.18), 
becomes 

= ~ # J * ( ~ ) A ~ A + ( x )  (9.  ‘LO) 
9 ,  

Thus, we are able to replace the troublesome computation of the inverse of the noriiral 
matrix with the  computation of the transformation matrix A by the Graham Schmidt, pro- 
cedure. Wc are able to us(! this matrix to estimate the transformation coefficients, the covari- 
ance of this estimate, and the estimate of the error covariance in terms of the original basis 
functions. 

In summary, the algorithm for computing the transformation and evaluating its precision, 

Apply the Graham-Schmidt procedure to  orthonormalize the weighted original basis 
functions, generatirig the linear transformation matrix A of equation (9.8). 
Estimate the original coefficient vector using equation (9.16). 

Estimate the covariance of the estimate of the original coefficient vector using equation 

Estimate the error variance of the transformation at any point in map space using 
equation (9.20). 

using orthonormal basis functions, is the following: 
0 

0 

0 

( 9.19). 
0 



- 105 - 

9.3. Evaluation of the Geometric Accuracy of a Landsat TM Image 
The orthonormal coordinate transformation algorithm was applied to a Landsat thematic 

mapper (TM) image to determine the accuracy with which the geometry could be rectified to a 
Universal Transverse Mercator (UTM) map projection, and to determine if a bilinear, or affine, 
transformation was adequate in producing this correction. The image analyzed was a 982 by 
1024 pixel Landsitt 4 TM subimage of a region including Austin, Texas, acquired January 25, 
1983 (scene ID 40193-16315, row 39, path 27). This scene is characterized by a blend of urban 
and rural land usv features with low terrain relief. 

To identify GCPs, the KL transform w a s  applied to the image (as described in section 
7.3.2 of this section), and the first three transformed components were displayed in false color 
on an International Imaging Systems (11s) model 70 image processing system. This image was 
compared with USGS topographic maps (7  1/2 minute series) to  identify readily observable 
GCPs. Image GCP locations were determined using a trackball-controlled interactive progrant 
on the IIS system. Map GCP locations were determined using a 30 inch by 40 inch digital 
tablet interfaced to a graphics terminal. The varied nature of the landscape and the absence of 
a regular, systematic pattern of roads and transportation features complicated the identification 
of GCPs. Typically, GCPs included road intersections, bridges across rivers, or other natural 
features tha t  were readily identifiable on the USGS maps. 

The image GCP standard deviations were roughly estimated from the visual difficulty 
encountered in locating them on the image display. Experience has shown tha t  easily identified 
features can be located with a standard deviation of 0.9 pixel. The relative difficulty in locating 
less obvious GCPs was estimated and the corresponding standard deviations were appropriately 
scaled from the  base value. GCPs that  could be located with medium difficulty were estimated 
to  have standard deviations of 1.35 pixel, and GCPs presenting moderate difficulty were 
estimated to have standard deviations of 1.8 pixel. 

The accuracy of the acquired GCPs was then assessed by applying the orthonormal coordi- 
nate transformation and checking the residual errors, P I ,  and the residuals weighted by the 
inverse of the GCP observation standard deviation. GCPs for which the weighted residual was 
greater than three were considered as “suspect,” and were examined to determine if an error 
was made in determining its location in the image or maps. Graphics overlays on the irnagt., 
showing the observed and estimated image GCP locations, were also used to  determine errors. 
When we determined tha t  we had acquired the location of the wrong feature on either t,lic 

image or the map, the GCP locations were measured again. Using this method, we were ablc l o  

locate 58 GCPs, well separated spatially on the  image. 
We applied the biquadratic transformation (p = 6), using the following mapping func- 

tions: 

4 ( 4  = (9.21) 

where (7 denotes a sample average over the observed GCPs. We compared this with th r  bil- 
inear or affine tra,nsfoimation, using the first three of the six basis functions given in equation 
(9.21). 

For the biquadratic transformation, the estimates of the coefficient vectors and their stan- 
dard deviations are given in Table 9.1. The transformation of the GCPs is detailed in Table 
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9.2, where the map and image GCPs, image GCP standard deviation estimates, the transforrned 
map GCPs, the error standard deviation at the GCP locations, the residual errors, and the 
weighted residual errors are listed. The weighted sums of square errors per degree of freedom 
are 

J1/( n -p ) = 1.222 

J2/( n -p ) = 0.848 

The confidence limit per degree of freedom for a=0.05 is 1.343, so the chi-squared test is passed 
at the 0.05 significancc level in both coordinates, indicating a good fit. However, the uncertain- 
ties or (lie quadratic coefficients (k=3,4,5) are of the same order of magnitude as the 
coeflicicnts. This indicates that  we have little confidence in the quadratic coefficients and that 
we would obtain better results from a bilinear or affine transformation. 

Table 9.1. Transformation Vectors - Biauadratic 

k 

1 
2 
3 
4 
5 
6 

-- 

Coordinate y Coordinate y 
Coefficients Uncertainty Coefficients Uncertainty 

478.693 0.250 518.060 0.267 

S .  
&lk “ l k  &2k a2k  

S -  

34.6631 0.0183 -5.4218 0.0201 
-5.4376 0.0149 -34.6564 0.0163 
0.00 1 82 1 0.00250 0.002062 0.00271 
0.001832 0.00194 -0.003253 0.00210 
0.004880 0.00208 -0.002241 0.00230 

For the bilinear or affine transformation, the estimates of the coefficient vectors and their 
standard deviations are given in Table 9.3. The transformation of the GCPs is detailed in 
Table 9.4, which provides the same information given for the biquadratic transformation in 
Table 9.2. Note that  the weighted residuals are higher than that for the biquadratic case, 
although they are less than 3 in every case, with the largest being 2.8. The weighted sums o f  
squared errors per degree of freedom are 

J1/( n -p ) = 1.288 

J2/( n - p  ) = 0.861 

which are also slightly higher than for the biquadratic case. The confidence limit per degrev of 
freedom for cu=O.05 is 1.333, so again the chi-squared test is passed in both coordinates, indicat- 
ing a good fit. 

Table 9.3. Transformation Vectors -- Dilinear -- 
Coordinate y 1 Coordinate y 2 

Coefficients Uncertainty Coefficieri ts Uncertainty 

&2k ’ IC &l k S 

1 478.9392 0.1360 5 17.9066 0.1461 
2 34.6600 0.0182 -5.4181 0.0198 
3 -5.4360 0.0148 -34.6586 0.0160 

T o  assess the accuracy of t,he transformation, consider the values of s- the estimated 
ut ’ 

standard deviation of the transformation, given in Table 9.4. These are very low, with the larg- 
est being 0.373 for GCP number 36, located near the edge of the subimage, at line 991 and pixel 
39. The total transforrnatioIi uncertainty is given by 
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s = (sgl 2 + S i , )  2 112 (9.22) 

These values range from 0.207 for GCP 43, near the spatial centroid of the GCPs, to  0.514 for 
GCP 36, near the edge of the subimage. Using a Gaussian assumption, this indicates, in t he  
worst case, tha t  the gt!omet,ric accuracy is within 0.5 pixel 68 percent of the time, and is within 
1 pixel 90 percent of the time. 

The lraiisforniation coefficients of Table 9.3 indicate that the geometric distortion in thc 
image is adequatdy modelcd by translation, scaling, and rotation, since is nearly equal to 
-bZ3, and iiI3 is nearly equal to &22. Further computatiori shows tha t  the scaling factor is 
35.0825 meters ptsr pixel, and lhe rotation angle is 8.903 degrees with respect to  the UTM map 
projection coordinate system. 

9.4. Summary 
We have dcveloped a technique for bivariate coordinate transformation to  rectify the 

geometry of satellite images based on the method of least-squares. T o  resolve the numerical 
problems associated with tliis method, we have modified it by orthonormalizing the basis func- 
tions, t h u s  avoiding the need to invert a possibly unstable least-squares normal matrix. Expres- 
sions have been derived for the accuracy of the geometric transformation and of the rectification 
of the image to  a map projection as a function of the number, location, and local accuracy of 
the ground control points used to  characterize the transformation. Thus, the technique can also 
be used to evaluate the geometric registration of a coordinate-transformed image. 

The technique was applied to a portion of a Landsat TM image. The image analyzed was  
a 982 by 1024 pixel Landsat 4 TM subimage of a region including Austin, Texas, acquired Janu- 
ary 25, 1983 (sctsne I D  40193-16315). Using an interactive image display system to  acquire 
image control points and a digital tablet to acquire the corresponding map control points from 
USGS topographic maps, 58 GCPs were acquired. Computation of a biquadratic coordinate 
transformation from tliesc GCPs showed that the second degree terms were insignificant. [Jsing 
a biquadratic, or affine, transforniatiou, the total transformation uncertainty at the GCPs 
ranged from 0.20i to 0.514 pixels. The most significant geometric errors are translation, scaling, 
and rotation, with a scaling factor of 35.0825 meters per pixel and a rotation angle of 8.903 
degrees with respwt to the UTM map projection coordinate system. 
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Table 9.2. Transformation of GCPs - Biquadratic 
Observed Image GCPs Estimated Estimated 

Observed Map GCPs Image GCPs Error Residual Weighted 
GCP Locations Locations Std Devs Locations Std Devs Error Residual 
No. (UTM - kilometers) (pixels) (pixeb) (pixels) (pixels) (pixels) Error 

r l l  721 

(71, (J21 
0 2 i  8p1 8p1 r l i  r 2 i  - - i z li 1: 2 i  Y l i  Y 2 i  01, 0 2 i  P l i  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 

612.773 3369.618 
617.384 3367.049 
615.521 3371.073 
616.993 3363.683 
612.287 3362.600 
614.455 3358.009 
621.316 3357.388 
622.406 3360.651 
617.897 3359.217 
620.500 33G3.675 
622.113 3367.230 
625.055 3368.100 
623.024 3363.367 
620.636 3370.620 
636.485 3365.930 
633.4 53 3367.606 
627.625 3366.367 
629.477 3368.868 
627.466 3363.551 
631.766 3364.357 
635.504 3363.257 
633.059 3360.107 
630.368 3355.877 
634.108 3355.575 
636.472 3357.554 
624.969 3356.888 
625.786 3360.700 
610.654 3356.096 
816.329 3355.999 
616.823 3351.072 
619.689 3348.759 
621.923 3354.374 
619.513 3353.488 
613.773 3349.269 
614.751 3353.546 
611.197 3349.547 
608.891 3344.139 
612.978 3345.382 
615.836 3346.646 
618.953 3343.941 
621.632 3346.973 
616.105 3342.871 
613.662 3356.840 
824.211 3353.073 
628.562 3354.336 
631.142 3350.063 
632.772 3353.071 
625.650 3348.370 
626.761 3350.992 
636.311 3351.418 
633.G46 3347.896 
629 161 3346.922 
632.123 3345.170 
633.015 3340.399 
628.695 3343.244 
627.218 3340.839 
622.923 3345.163 
623.946 3342.799 

32 
208 
121 
213 

55 
155 
396 
418 
267 
335 
369 
468 
424 
301 
877 
762 
566 
616 
577 
722 
856 
791 
7 20 
850 
922 
526 
532 
35 

231 
273 
386 
433 
354 
178 
192 
86 
39 

174 
267 
389 
466 
294 
133 
520 
664 
776 
816 
594 
619 
948 
873 
7 24 
837 
896 
7 29 
691 
517 

87 0.9 
151. 1.8 
22. 0.9 

271. 0.9 
334. 0.9 
482 1.8 
465. 1.4 
348 1.4 
421. 1.8 
251 0.9 
120. 0.9 
74 0.9 

247. 0.9 
10. 0.9 

46. 0.9 
120. 1.4 

23. 0.9 
219. 0.9 
167. 1.4 
185 1.4 
309. 1.8 
468. 0.9 
458. 0.9 
377. 1.4 
463 0.9 
326. 0.9 
573 1.8 
542. 0.9 
708. 1.4 
773. 0.9 
568 0.9 
611. 1.4 
788. 1.4 
637 1.4 
794. 1.4 
991 0.9 
926 0.9 
866 0.9 
943 1.4 
826 1.4 
996 1.4 
529 1.8 
598 0.9 
531. 1.4 
667 0.9 
553. 1.4 

657 1.4 
591 0.9 
727 0.9 
787 09 
831 0.9 
992 0.9 
9lG. 0.9 

LOO7 0.9 
879 0.9 

87. 0.0 

754 0.a 

567. 957 0.9 

0.9 
1.8 
0.9 
0.9 
0.9 
1.8 
1.4 
0.9 
1.8 
0.9 
0.9 
1.4 
1.4 
0 .9  
1.4 
0.9 
0.9 
1.4 
0.9 
1.4 
1.8 
1.4 
1.4 
1.4 
1.4 
1.4 
1.4 
1.8 
1.4 
1.4 
1.4 
1.4 
0.9 
1.4 
1.4 
1.4 
0.9 
0.9 
0.9 
1.4 
1.4 
1.4 
1.8 
0.9 
0.9 
0.9 
1.4 
0.9 
0.9 
0.9 
1.4 
1 4  
1.4 
1 . 4  
0.9 
0.9 
1 . 4  

33.33 
207.26 
120.77 
211.99 
54.75 

154.98 
396.11 
416.19 
267.63 
333.66 
370.40 
467.86 
422.90 
300.83 
876.63 
762.29 
566.44 
617.35 
576.07 
721.09 
856.82 
788.81 
718.21 
849.58 
921.03 
525.47 
533.17 
33.84 

230.88 
274.97 
386.87 
433.58 
354.92 
179.32 
189.69 
88.70 
38.90 

173.30 
265.15 
387.86 
463.91 
295.27 
133.90 
519.92 
663.91 
776.51 
816.76 
595.40 
619.64 
948.43 
875.04 
724.58 
837.07 
893.90 
728.83 
690.84 
51 8.56 

~~ 

87.97 0.51 0.53 -1.33 -0.97 

0 9  566.89 956.39 0.33 0.36 0.11 0.61 

151.89 
22.33 

270.84 
334.17 
481.46 
465.58 
346.52 
420.78 
251.95 
119.75 
73.51 

248.91 
10.04 
86.97 
45.11 

119.75 
22.78 

218.41 
167.10 
185.16 
307.71 
468.94 
459.29 
377.93 
463.10 
326.45 
568 49 
540.86 
708.78 
773.26 
566.73 
610.52 
787.76 
634.41 
792.21 
991.74 
926.53 
867.27 
943.91 
824.53 
996.31 
526.28 
599.40 
532.11 
666.26 
553.30 
754.50 
657.71 
591.58 
727.87 
785.73 
830.41 
990.69 
915.46 

1006.55 
880.51 

0.29 0.30 0.74 -0.89 
0.46 0.47 0.23 -0.33 
0.26 0.27 1.01 0.16 

0.30 0.32 0.02 0.54 
0.25 0.27 -0.11 -0.58 
0.24 0.25 1.81 1.48 

0.41 0.42 0.25 -0.17 

0.25 0.27 -0.63 0.22 
0.23 0.24 1.34 -0.95 
0.27 0.28 -1.40 0.25 
0.30 0.33 0.14 0.49 
0.23 0.25 1.10 -1.91 
0.38 0.40 0.17 -0.04 
0.49 0.57 0.37 0.03 
0.42 0.48 -0.29 0.89 
0.28 0.31 -0.44 0.25 
0.38 0.43 -1.35 0.22 
0.23 0.26 0.93 0.59 
0.29 0.33 0.91 -0.10 
0.39 0.45 -0.82 -0.16 
0.28 0.31 2.19 1.29 

0.31 0.35 0.42 -1.29 
0.24 0.26 1.79 -0.94 

0.41 0.47 0.97 -0.93 
0.25 0.26 0.53 -0.10 
0.23 0.25 -1.17 -0.45 
0.44 0.46 1.16 4.51 
0.26 0.28 0.12 1.14 
0.24 0.26 -1.97 -0.78 
0.23 0.25 -0.87 -0.26 
0.25 0.27 -0.58 1.27 
0.24 0.26 -0.92 0.48 
0.29 0.30 -1.32 0.24 
0.28 0.29 2.31 2.59 
0.39 0.40 -2.70 1.79 
0.59 0.61 0.10 -0.74 
0.37 0.38 0.70 -0.53 
0.28 0.29 1.85 -1.27 
0.32 0.33 1.14 -0.91 
0.24 0.26 2.09 1.47 
0.39 0.40 -1.27 -0.31 
0.32 0.33 -0.90 2.72 
0.24 0.26 0.08 -1.40 
0.23 0.25 0.09 -1.11 
0.24 0.27 -0.51 0.74 
0.27 0.31 -0.76 -0.30 
0.22 0.24 -1.40 -0.50 
0.22 0.24 -0.64 -0.71 
0.42 0.49 -0.43 -0.58 
0.32 0.38 -2.04 -0.87 
0.23 0.26 -0.58 1.27 
0.31 0.37 -0.07 0.59 
0.50 0.60 2.10 1.31 
0.30 0.35 0.17 0.54 
0.40 0.45 0.16 0.45 
0.26 0.28 -1.56 -1.51 

1.47 
0.41 
0.25 
1.12 
0.28 
0.01 
0.08 
1.34 
0.35 
1.49 
1.56 
0.16 
1.22 
0.19 
0.41 
0.32 
0.32 
1.50 
1.03 
0.67 
0.61 
1.22 
1.99 
0.46 
0.72 
0.59 
1.30 
0.64 
0.14 
1.46 
0.97 
0.64 
0.68 
0.98 
1.71 
2.00 
0.11 
0.78 
2.05 
0.84 
1.55 
0.94 
0.50 
0.09 
0.07 
0.57 
0.56 
1.56 
0.47 
0.48 
2.26 
0.6L 
0.07 
2.33 
0.19 
0.17 
1.74 
0.13 

1.07 
0.49 
0.36 
0.18 
0.18 
0.30 
0.43 
1.65 
0.12 
1.06 
0.27 
0.36 
1.41 
0.04 
0.02 
0.99 
0.28 
0.16 
0.66 
0.07 
0.09 
0.96 
0.70 
0.96 
0.69 
0.07 
0.33 
2.50 
0.84 
0.58 
0.19 
0.94 
0.54 
0 18 
1.92 
1.32 
0.83 
0 58 
1.41 
U.67 
1.09 
0.23 
1.51 
1.56 
1.23 
0.83 
0.22 
0.55 
0.79 
0.64 
0.65 
0.94 
0.44 
0.97 
0.60 
0.50 
1.12 
0.68 
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Table 9.4. Transformation of GCPs - Bilinear 
Observed Image GCPR Estimated Estimated 

Observed Map GCPs Image GCPs Error Residual Weigh !,mi 
GCP Locations Locations Std Devs Locations Std Devs Error Residual 
No. (UTM - kilometers) (pixels) (pixels) (pixels) (pixels) (pixels) Error 

r l i  r ~ i  

V l i  U2I 
2 z 1; z 2 i  Y l i  Y z i  cli 6 2 i  91i  9 2 i  8p, 89 ,  r l i  r p i  - - - 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 

612.773 3369.618 
617.384 3367.049 
615.521 3371.073 
616.993 3363.683 
612.287 3362.600 
614.455 3358.009 
621.316 3357.388 
622.406 3360.651 
617.897 3359.217 
620.500 3363.675 
622.113 3367.230 
625.055 3368.100 
623.024 3363.367 
620.636 3370.620 
636.485 3365.930 
633.453 3367.606 
627.625 3366.367 
628.477 3368.868 
627.466 3363.551 
631.766 3364.357 
635.504 3363.257 
633.059 3360.107 
630.368 3355.877 
634.108 3355.575 
636.472 3357.554 
624.969 3356.888 
625.786 3360.700 
610.654 3356.096 
616.329 3355.999 
616.823 3351.072 
619.689 3348.758 
621.923 3354.374 
618.513 3353.488 
613.773 3349.269 
614.751 3353.546 
611.197 3349.547 
608.891 3344.139 
612.978 3345.382 
615.836 3346.646 
618.853 3343.941 
621.632 3346.973 
616.105 3342.871 
613.662 3356.840 
624.211 3353.073 
628.562 3354.336 
631.142 3350.063 
632.772 3353.071 
625.650 3348.370 
626.761 3350.992 
636.311 3351.418 
633.646 3347,896 
629.151 3346.922 
632.123 3345.170 
633.015 3340.399 
628.695 3343.244 
627.218 3340.839 
622.923 3345.153 
623.946 3342.799 

32. 
208. 
121 
213. 

55. 
155. 
396. 
418. 
267. 
335. 
369. 
468. 
424. 
301. 
877. 
762. 
566. 
616. 
577. 
722. 
856. 
791 
720. 
850. 
922. 
526. 
532 
35. 

231. 
273. 
386. 
433. 
354. 
178. 
192. 
86. 
39. 

174. 
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